Automatic Measurement of Fetal Brain Development from Magnetic Resonance Imaging: New Reference Data

被引:16
|
作者
Link, Daphna [1 ,2 ]
Braginsky, Michael B. [3 ]
Joskowicz, Leo [3 ]
Ben Sira, Liat [4 ]
Harel, Shaul [2 ,5 ]
Many, Ariel [6 ]
Tarrasch, Ricardo [7 ,8 ]
Malinger, Gustavo [9 ]
Artzi, Moran [1 ,2 ]
Kapoor, Cassandra [10 ]
Miller, Elka [10 ]
Ben Bashat, Dafna [1 ,2 ,8 ]
机构
[1] Tel Aviv Sourasky Med Ctr, Wohl Inst Adv Imaging, Funct Brain Ctr, Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
[3] Hebrew Univ Jerusalem, Sch Comp Sci & Engn, Jerusalem, Israel
[4] Tel Aviv Sourasky Med Ctr, Div Pediat Radiol, Tel Aviv, Israel
[5] Tel Aviv Sourasky Med Ctr, Pediat Neurol, Tel Aviv, Israel
[6] Tel Aviv Sourasky Med Ctr, Lis Matern Hosp, Dept Obstet & Gynecol, Tel Aviv, Israel
[7] Tel Aviv Univ, Jaime & Joan Constantiner Sch Educ, Tel Aviv, Israel
[8] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[9] Tel Aviv Sourasky Med Ctr, Obstet & Gynecol Ultrasound Unit, Tel Aviv, Israel
[10] Univ Ottawa, Childrens Hosp Eastern Ontario, Med Imaging Dept, Ottawa, ON, Canada
关键词
Fetal magnetic resonance imaging; Fetal growth; Brain; Intrauterine growth restriction; Brain segmentation; Fetal brain development; Normal growth charts; INTRAUTERINE GROWTH-RETARDATION; IN-UTERO; SEGMENTATION; MR; ULTRASOUND; PREGNANCY; FETUSES; CHARTS; ATLAS; SHAPE;
D O I
10.1159/000475548
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Background: Accurate fetal brain volume estimation is of paramount importance in evaluating fetal development. The aim of this study was to develop an automatic method for fetal brain segmentation from magnetic resonance imaging (MRI) data, and to create for the first time a normal volumetric growth chart based on a large cohort. Subjects and Methods: A semi-automatic segmentation method based on Seeded Region Growing algorithm was developed and applied to MRI data of 199 typically developed fetuses between 18 and 37 weeks' gestation. The accuracy of the algorithm was tested against a sub-cohort of ground truth manual segmentations. A quadratic regression analysis was used to create normal growth charts. The sensitivity of the method to identify developmental disorders was demonstrated on 9 fetuses with intrauterine growth restriction (IUGR). Results: The developed method showed high correlation with manual segmentation (r(2) = 0.9183, p < 0.001) as well as mean volume and volume overlap differences of 4.77 and 18.13%, respectively. New reference data on 199 normal fetuses were created, and all 9 IUGR fetuses were at or below the third percentile of the normal growth chart. Discussion: The proposed method is fast, accurate, reproducible, user independent, applicable with retrospective data, and is suggested for use in routine clinical practice. (C) 2017 S. Karger AG, Basel
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] Cerebral biometry in fetal magnetic resonance imaging: new reference data
    Tilea, B.
    Alberti, C.
    Adamsbaum, C.
    Armoogum, P.
    Oury, J. F.
    Cabrol, D.
    Sebag, G.
    Kalifa, G.
    Garel, C.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2009, 33 (02) : 173 - 180
  • [2] Semi-automatic segmentation of the fetal brain from magnetic resonance imaging
    Wang, Jianan
    Nichols, Emily S.
    Mueller, Megan E.
    de Vrijer, Barbra
    Eagleson, Roy
    McKenzie, Charles A.
    de Ribaupierre, Sandrine
    Duerden, Emma G.
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [3] Normative biometry of the fetal brain using magnetic resonance imaging
    Kyriakopoulou, Vanessa
    Vatansever, Deniz
    Davidson, Alice
    Patkee, Prachi
    Elkommos, Samia
    Chew, Andrew
    Martinez-Biarge, Miriam
    Hagberg, Bibbi
    Damodaram, Mellisa
    Allsop, Joanna
    Fox, Matt
    Hajnal, Joseph V.
    Rutherford, Mary A.
    BRAIN STRUCTURE & FUNCTION, 2017, 222 (05) : 2295 - 2307
  • [4] Magnetic resonance imaging of the fetal brain
    Rutherford, Mary A.
    CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2009, 21 (02) : 180 - 186
  • [5] Adverse Prenatal Exposures and Fetal Brain Development: Insights From Advanced Fetal Magnetic Resonance Imaging
    De Asis-Cruz, Josepheen
    Andescavage, Nickie
    Limperopoulos, Catherine
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2022, 7 (05) : 480 - 490
  • [6] DeepDicomSort: An Automatic Sorting Algorithm for Brain Magnetic Resonance Imaging Data
    van der Voort, Sebastian R.
    Smits, Marion
    Klein, Stefan
    NEUROINFORMATICS, 2021, 19 (01) : 159 - 184
  • [7] Reference ranges for fetal brain structures using magnetic resonance imaging: systematic review
    Di Mascio, D.
    Khalil, A.
    Rizzo, G.
    Kasprian, G.
    Caulo, M.
    Manganaro, L.
    Odibo, A. O.
    Flacco, M. E.
    Giancotti, A.
    Buca, D.
    Liberati, M.
    Timor-Tritsch, I. E.
    D'Antonio, F.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2022, 59 (03) : 296 - 303
  • [8] Indications and technique of fetal magnetic resonance imaging
    Asenbaum, U.
    Brugger, P. C.
    Woitek, R.
    Furtner, J.
    Prayer, D.
    RADIOLOGE, 2013, 53 (02): : 109 - 115
  • [9] Indications and technique of fetal magnetic resonance imaging
    Asenbaum, U.
    Brugger, P. C.
    Woitek, R.
    Furtner, J.
    Prayer, D.
    RADIOLOGE, 2013, 53 (02): : 109 - 115
  • [10] Magnetic resonance imaging of the fetal brain
    Tee, Lawrence M. F.
    Kan, Elaine Y. L.
    Cheung, Joey C. Y.
    Leung, W. C.
    HONG KONG MEDICAL JOURNAL, 2016, 22 (03) : 270 - 278