Lowering the Power Consumption of Ni-Ti Shape Memory Alloy

被引:0
|
作者
Villanueva, Alex [1 ]
Gupta, Shashaank [1 ]
Priya, Shashank [1 ]
机构
[1] Virginia Tech, Ctr Energy Harvesting Mat & Syst, Bioinspired Mat & Devices Lab, Blacksburg, VA 24061 USA
关键词
shape memory alloy; nickel; titanium; copper; transition temperature; power consumption; actuator;
D O I
10.1117/12.914539
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Shape memory alloy (SMA) wires are capable of providing contractile strain mimicking the functionality of muscle fibers. They are promising for the development of biomimetic robots due to their high power density and desired form factor. However, they suffer from significantly high power consumption. The focus of this paper was to address this drawback associated with SMAs. Two different parameters were investigated in this study: i) lowering of the martensite to austentite phase transition temperatures and ii) the reduction of the thermal hysteresis. For an equiatomic Ni-Ti alloy, replacing nickel with 10 at% copper reduces the thermal hysteresis by 50% or more. For NiTi alloys with nickel content greater than 50 at%, transition temperature decreases linearly at a rate of 100 degrees C/Ni at%. Given these two power reducing factors, an alloy with composition of Ni40+xTi50-xCu10 was synthesized with x = 0, +/-1, +/-2, +/-3, +/-4, +/-5. Metal powders were melted in an argon atmosphere using an RF induction furnace to produce ingots. All the synthesized samples were characterized by differential scanning calorimetric (DSC) analysis to reveal martensite to austenite and austenite to martensite transition temperatures during heating and cooling cycles respectively. Scanning electron microscopy (SEM) was conducted to identify the density and microstructure of the fractured samples. The alloy composition and synthesis method presented in this preliminary work shows the possibility of achieving low power consuming, high performance SMAs.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] IR thermography and resistivity investigations on Ni-Ti Shape Memory Alloy
    Costanza, Girolamo
    Paoloni, Stefano
    Tata, Maria Elisa
    MATERIALS AND APPLICATIONS FOR SENSORS AND TRANSDUCERS III, 2014, 605 : 23 - 26
  • [22] XPS characterisation of surface modified Ni-Ti shape memory alloy
    Green, SM
    Grant, DM
    Wood, JV
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1997, 224 (1-2): : 21 - 26
  • [23] Experimental Study of Superelasticity of Ni-Ti Shape Memory Alloy Wires
    Zhang, Xiangyu
    Hu, Fangqi
    Chen, Ming
    Xu, Lidan
    Wu, Ruoyi
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024,
  • [24] STRETCH FORMED Ni-Ti SHAPE MEMORY ALLOY SHEET PART
    Fann Kuang-Jau
    Su Jhe-Yung
    METAL 2016: 25TH ANNIVERSARY INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS, 2016, : 356 - 359
  • [25] THE ORIENTATION DEPENDENCE OF THE RECOVERABLE SHAPE MEMORY STRAIN IN A NI-TI ALLOY
    CIZEK, P
    KOVOVE MATERIALY-METALLIC MATERIALS, 1989, 27 (01): : 98 - 108
  • [26] Unnotched fatigue behavior of an austenitic Ni-Ti shape memory alloy
    Nayan, N.
    Roy, D.
    Buravalla, V.
    Ramamurty, U.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 497 (1-2): : 333 - 340
  • [27] Contribution to the investigation of corrosion properties of the Ni-Ti alloy with shape memory
    Sevcíková, J
    Kocich, J
    METALURGIJA, 2002, 41 (04): : 291 - 294
  • [28] Characterization of Polylactide Layer Deposited on Ni-Ti Shape Memory Alloy
    Tomasz Goryczka
    Barbara Szaraniec
    Journal of Materials Engineering and Performance, 2014, 23 : 2682 - 2686
  • [29] Thermoelectric triggering of phase transformations in Ni-Ti shape memory alloy
    Potapov, PL
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 52 (2-3): : 195 - 201
  • [30] CHARACTERIZATION OF THE CARBIDES IN A Ni-Ti SHAPE-MEMORY ALLOY WIRE
    Godec, Matjaz
    Kocijan, Aleksandra
    Jenko, Monika
    MATERIALI IN TEHNOLOGIJE, 2011, 45 (01): : 61 - 65