Lowering the Power Consumption of Ni-Ti Shape Memory Alloy

被引:0
|
作者
Villanueva, Alex [1 ]
Gupta, Shashaank [1 ]
Priya, Shashank [1 ]
机构
[1] Virginia Tech, Ctr Energy Harvesting Mat & Syst, Bioinspired Mat & Devices Lab, Blacksburg, VA 24061 USA
来源
BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS AND COMPOSITES 2012 | 2012年 / 8342卷
关键词
shape memory alloy; nickel; titanium; copper; transition temperature; power consumption; actuator;
D O I
10.1117/12.914539
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Shape memory alloy (SMA) wires are capable of providing contractile strain mimicking the functionality of muscle fibers. They are promising for the development of biomimetic robots due to their high power density and desired form factor. However, they suffer from significantly high power consumption. The focus of this paper was to address this drawback associated with SMAs. Two different parameters were investigated in this study: i) lowering of the martensite to austentite phase transition temperatures and ii) the reduction of the thermal hysteresis. For an equiatomic Ni-Ti alloy, replacing nickel with 10 at% copper reduces the thermal hysteresis by 50% or more. For NiTi alloys with nickel content greater than 50 at%, transition temperature decreases linearly at a rate of 100 degrees C/Ni at%. Given these two power reducing factors, an alloy with composition of Ni40+xTi50-xCu10 was synthesized with x = 0, +/-1, +/-2, +/-3, +/-4, +/-5. Metal powders were melted in an argon atmosphere using an RF induction furnace to produce ingots. All the synthesized samples were characterized by differential scanning calorimetric (DSC) analysis to reveal martensite to austenite and austenite to martensite transition temperatures during heating and cooling cycles respectively. Scanning electron microscopy (SEM) was conducted to identify the density and microstructure of the fractured samples. The alloy composition and synthesis method presented in this preliminary work shows the possibility of achieving low power consuming, high performance SMAs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Solidification of Ni-Ti shape memory alloy: Modeling and simulation
    Carvalho L.C.
    De Lima A.G.B.
    Calazans Duarte R.N.
    Moreira G.
    De Brito M.K.T.
    Queiroz R.A.
    Defect and Diffusion Forum, 2019, 391 : 136 - 141
  • [2] IR thermography and resistivity investigations on Ni-Ti Shape Memory Alloy
    Costanza, Girolamo
    Paoloni, Stefano
    Tata, Maria Elisa
    MATERIALS AND APPLICATIONS FOR SENSORS AND TRANSDUCERS III, 2014, 605 : 23 - 26
  • [3] CHARACTERIZATION OF THE CARBIDES IN A Ni-Ti SHAPE-MEMORY ALLOY WIRE
    Godec, Matjaz
    Kocijan, Aleksandra
    Jenko, Monika
    MATERIALI IN TEHNOLOGIJE, 2011, 45 (01): : 61 - 65
  • [4] Thermoelectric triggering of phase transformations in Ni-Ti shape memory alloy
    Potapov, PL
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1998, 52 (2-3): : 195 - 201
  • [5] Characterization of Polylactide Layer Deposited on Ni-Ti Shape Memory Alloy
    Tomasz Goryczka
    Barbara Szaraniec
    Journal of Materials Engineering and Performance, 2014, 23 : 2682 - 2686
  • [6] Characterization of Polylactide Layer Deposited on Ni-Ti Shape Memory Alloy
    Goryczka, Tomasz
    Szaraniec, Barbara
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2014, 23 (07) : 2682 - 2686
  • [7] Constitutive behavior of Ni-Ti shape memory alloy under hot compression
    江树勇
    张艳秋
    赵亚楠
    唐明
    易文林
    JournalofCentralSouthUniversity, 2013, 20 (01) : 24 - 29
  • [8] High temperature creep measurements in equiatomic Ni-Ti shape memory alloy
    Lexcellent, C
    Robinet, P
    Bernardini, J
    Beke, DL
    Olier, P
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2005, 36 (10) : 509 - 512
  • [9] Constitutive behavior of Ni-Ti shape memory alloy under hot compression
    Shu-yong Jiang
    Yan-qiu Zhang
    Ya-nan Zhao
    Ming Tang
    Wen-lin Yi
    Journal of Central South University, 2013, 20 : 24 - 29
  • [10] Constitutive behavior of Ni-Ti shape memory alloy under hot compression
    Jiang Shu-yong
    Zhang Yan-qiu
    Zhao Ya-nan
    Tang Ming
    Yi Wen-lin
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2013, 20 (01) : 24 - 29