Miniaturized Plasma Sources: Can Technological Solutions Help Electric Micropropulsion?

被引:10
作者
Baranov, Oleg O. [1 ]
Xu, Shuyan [2 ]
Xu, Luxiang [2 ]
Huang, S. [2 ]
Lim, J. W. M. [2 ]
Cvelbar, U. [3 ]
Levchenko, Igor [2 ,4 ]
Bazaka, Kateryna [4 ]
机构
[1] Natl Aerosp Univ, Fac Aircraft Engines, UA-61183 Kharkov, Ukraine
[2] Nanyang Technol Univ, Plasma Sources & Applicat Ctr, NIE, Singapore 637616, Singapore
[3] Jozef Stefan Inst, Dept Surface Engn & Optoelect, Ljubljana 1000, Slovenia
[4] Queensland Univ Technol, Sch Chem, Phys, Mech Engn, Brisbane, Qld 4000, Australia
基金
新加坡国家研究基金会;
关键词
Microplasma; plasma sources; propulsion; MICROPLASMAS; PROPULSION; DEVICES;
D O I
10.1109/TPS.2017.2773073
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, we examine several different types of miniaturized plasma sources that have been developed for nonpropulsion applications, but could be useful for the advancement of electric propulsion. With the same or similar physical principles and often similar design solutions, such sources suggest useful pathways for modernization and integration of presently available well established as well as emerging miniaturized plasma sources into space thruster systems. Features related to miniaturization and optimization of the technological plasma sources will provide useful insights for consideration by the electric propulsion specialists. It is not the aim of this paper to show an entire spectrum of technological microplasma systems, but rather to outline possible future trends and perspectives for the miniaturized technological plasmas in relation to space micropropulsion systems.
引用
收藏
页码:230 / 238
页数:9
相关论文
共 40 条
  • [1] Plasmas for space propulsion
    Ahedo, Eduardo
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [2] Operating modes of field emission assisted microplasmas in the microwave regime
    Alamatsaz, Arghavan
    Venkattraman, Ayyaswamy
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (12)
  • [3] Andrenucci M., 2005, 29 INT EL PROP C IEP
  • [4] Crystalline Si nanoparticles below crystallization threshold: Effects of collisional heating in non-thermal atmospheric-pressure microplasmas
    Askari, S.
    Levchenko, I.
    Ostrikov, K.
    Maguire, P.
    Mariotti, D.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (16)
  • [5] Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons
    Bazaka, Kateryna
    Jacob, Mohan V.
    Ostrikov, Kostya
    [J]. CHEMICAL REVIEWS, 2016, 116 (01) : 163 - 214
  • [6] Electron-driven processes in high-pressure plasmas
    Becker, KH
    Masoud, NM
    Martus, KE
    Schoenbach, KH
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2005, 35 (02) : 279 - 297
  • [7] Tutorial: Physics and modeling of Hall thrusters
    Boeuf, Jean-Pierre
    [J]. JOURNAL OF APPLIED PHYSICS, 2017, 121 (01)
  • [8] A model for the self-pulsing regime of microhollow cathode discharges
    Chabert, P.
    Lazzaroni, C.
    Rousseau, A.
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (11)
  • [9] Plasmas for spacecraft propulsion
    Charles, C.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (16)
  • [10] A critical history of electric propulsion: The first 50 years (1906-1956)
    Choueiri, EY
    [J]. JOURNAL OF PROPULSION AND POWER, 2004, 20 (02) : 193 - 203