Data-driven strategies for optimization of integrated chemical plants

被引:10
|
作者
Ma, Kaiwen [1 ]
V. Sahinidis, Nikolaos [2 ,3 ]
Amaran, Satyajith [7 ]
Bindlish, Rahul [4 ]
Bury, Scott J. [5 ]
Griffith, Devin [6 ]
Rajagopalan, Sreekanth [7 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[4] Dow Chem Co USA, Houston, TX USA
[5] Dow Chem Co USA, Midland, MI USA
[6] Aspen Technol, Houston, TX USA
[7] Dow Chem Co USA, Lake Jackson, TX USA
关键词
Data-driven optimization; Surrogate modeling; ALAMO; FLEXIBILITY ANALYSIS; FEASIBILITY ANALYSIS; GLOBAL OPTIMIZATION; SURROGATE MODELS; CHALLENGES; NETWORKS; DESIGN; SYSTEM;
D O I
10.1016/j.compchemeng.2022.107961
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Operation optimization over large-scale integrated chemical plants is an inherently complex problem. We propose a surrogate-based optimization approach to optimize the operation of an industrial site that addresses both short-term market change and long-term maintenance plans. We develop a platform for automating the simulation and construction of surrogate models with a propagation error mitigation strategy. We are the first to investigate the impact of different levels of abstraction for surrogate models in site-level optimization. We also develop a deterministic, discrete-time optimization model that uses data-driven surrogate models. By optimizing a rolling horizon model with the above optimization model as the underlying model for each planning interval, we show that the plant level of abstraction is the superior approach. We demonstrate how data-driven surrogates can help address site-level process optimization by abstracting the process site network to a level that balances relevant details with tractability.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Data-driven strategies for extractive distillation unit optimization
    Ma, Kaiwen
    Sahinidis, Nikolaos, V
    Bindlish, Rahul
    Bury, Scott J.
    Haghpanah, Reza
    Rajagopalan, Sreekanth
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 167
  • [2] Data-Driven Optimization Strategies for Tunable RF Systems
    Pirrone, Michelle
    Dall'Anese, Emiliano
    Barton, Taylor W.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (03) : 1919 - 1931
  • [3] Data-Driven Approach Develops Proactive Chemical Treatment Strategies
    Hudson, Rachel W.
    Spicka, Kevin J.
    Pagel, Ryan W.
    JPT, Journal of Petroleum Technology, 2022, 74 (09): : 94 - 96
  • [4] Data-driven optimization strategies for enhanced cardiovascular risk assessment
    Hardas, Bhalchandra M.
    Aush, Mithun G.
    Raut, Vaishali
    JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2024, 27 (02) : 315 - 325
  • [5] Integrated data-driven modeling and experimental optimization of granular hydrogel matrices
    Verheyen, Connor A.
    Uzel, Sebastien G. M.
    Kurum, Armand
    Roche, Ellen T.
    Lewis, Jennifer A.
    MATTER, 2023, 6 (03) : 1015 - 1036
  • [6] Data-driven stochastic optimization for distributional ambiguity with integrated confidence region
    Steffen Rebennack
    Journal of Global Optimization, 2022, 84 : 255 - 293
  • [7] Data-driven Simulation and Optimization for Covid-19 Exit Strategies
    Ghamizi, Salah
    Rwemalika, Renaud
    Cordy, Maxime
    Veiber, Lisa
    Bissyande, Tegawende F.
    Papadakis, Mike
    Klein, Jacques
    Le Traon, Yves
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3434 - 3442
  • [8] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [9] Data-driven stochastic optimization for distributional ambiguity with integrated confidence region
    Rebennack, Steffen
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 84 (02) : 255 - 293
  • [10] DATA-DRIVEN NONSMOOTH OPTIMIZATION
    Banert, Sebastian
    Ringh, Axel
    Adler, Jonas
    Karlsson, Johan
    Oktem, Ozan
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 102 - 131