A Generalization of Distance Functions for Fuzzy c-Means Clustering With Centroids of Arithmetic Means

被引:50
|
作者
Wu, Junjie [1 ]
Xiong, Hui [2 ]
Liu, Chen [3 ]
Chen, Jian [4 ]
机构
[1] Beihang Univ, Sch Econ & Management, Dept Informat Syst, Beijing 100191, Peoples R China
[2] Rutgers State Univ, Dept Management Sci & Informat Syst, Newark, NJ 07102 USA
[3] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[4] Tsinghua Univ, Sch Econ & Management, Dept Management Sci & Engn, Beijing 100084, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Convex function; fuzzy c-means (FCM); l(p) norm; point-to-centroid distance (P2C-D); OPTIMALITY TESTS; CONVERGENCE;
D O I
10.1109/TFUZZ.2011.2179659
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy c-means (FCM) is a widely used fuzzy clustering method, which allows an object to belong to two or more clusters with a membership grade between zero and one. Despite the considerable efforts made by the clustering community, the common characteristics of distance functions suitable for FCM remain unclear. To fill this crucial void, in this paper, we first provide a generalized definition of distance functions that fit FCM directly. The goal is to provide more flexibility to FCM in the choice of distance functions while preserving the simplicity of FCM by using the centroids of arithmetic means. Indeed, we show that any distance function that fits FCM directly can be derived by a continuously differentiable convex function and, thus, is an instance of the generalized point-to-centroid distance (P2C-D) by definition. In addition, we prove that if the membership grade matrix is nondegenerate, any instance of the P2C-D fits FCM directly. Finally, extensive experiments have been conducted to demonstrate that the P2C-D leads to the global convergence of FCM and that the clustering performances are significantly affected by the choices of distance functions.
引用
收藏
页码:557 / 571
页数:15
相关论文
共 50 条
  • [31] Suppressed fuzzy C-means clustering algorithm
    Fan, JL
    Zhen, WZ
    Xie, WX
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1607 - 1612
  • [32] On the Noise Distance in Robust Fuzzy C-Means
    Cimino, M. G. C. A.
    Frosini, G.
    Lazzerini, B.
    Marcelloni, F.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 1, 2007, 1 : 124 - 127
  • [33] Relative entropy fuzzy c-means clustering
    Zarinbal, M.
    Zarandi, M. H. Fazel
    Turksen, I. B.
    INFORMATION SCIENCES, 2014, 260 : 74 - 97
  • [34] Diverse fuzzy c-means for image clustering
    Zhang, Lingling
    Luo, Minnan
    Liu, Jun
    Li, Zhihui
    Zheng, Qinghua
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 275 - 283
  • [35] Robust Weighted Fuzzy C-Means Clustering
    Hadjahmadi, A. H.
    Homayounpour, M. A.
    Ahadi, S. M.
    2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 305 - 311
  • [36] Soil clustering by fuzzy c-means algorithm
    Goktepe, AB
    Altun, S
    Sezer, A
    ADVANCES IN ENGINEERING SOFTWARE, 2005, 36 (10) : 691 - 698
  • [37] Gaussian Collaborative Fuzzy C-Means Clustering
    Gao, Yunlong
    Wang, Zhihao
    Li, Huidui
    Pan, Jinyan
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2021, 23 (07) : 2218 - 2234
  • [38] An improved fuzzy C-means clustering algorithm using Euclidean distance function
    Zhu, Xingchen
    Wu, Xiaohong
    Wu, Bin
    Zhou, Haoxiang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (06) : 9847 - 9862
  • [39] Fuzzy C-means and fuzzy swarm for fuzzy clustering problem
    Izakian, Hesam
    Abraham, Ajith
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1835 - 1838
  • [40] Belief C-Means: An extension of Fuzzy C-Means algorithm in belief functions framework
    Liu, Zhun-ga
    Dezert, Jean
    Mercier, Gregoire
    Pan, Quan
    PATTERN RECOGNITION LETTERS, 2012, 33 (03) : 291 - 300