ATCA data acquisition system for gamma-ray spectrometry

被引:30
|
作者
Pereira, R. C. [1 ]
Sousa, J. [1 ]
Fernandes, A. M. [1 ]
Patricio, F. [1 ]
Carvalho, B. [1 ]
Neto, A. [1 ]
Varandas, C. A. F. [1 ]
Gorini, G. [2 ]
Tardocchi, M. [2 ]
Gin, D. [3 ]
Shevelev, A. [3 ]
机构
[1] Univ Tecn Lisboa, IST Ctr Fusao Nucl, Inst Super Tecn, EURATOM Assoc, Lisbon, Portugal
[2] EURATOM ENEA CNR Assoc, Ist Fis Plasma, Milan, Italy
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
关键词
data acquisition; gamma-ray spectroscopy; PHA; pulse processing;
D O I
10.1016/j.fusengdes.2007.10.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The gamma-ray spectrometer JET EP2 (Joint European Torus enhancement project 2) project aims to perform high-resolution gamma spectroscopy at very high count rate (up to few MHz). Traditional analogue electronic has count rate and pulse processing limitations (long dead-time, pile-up challenge). Digital pulse processing (DPP) systems have been shown to have better performance than analogue ones for processing neutrons or/and gamma-ray signals. DPP can synthesize almost any pulse response shape without the signal degradation associated to complex analogue paths. High-speed transient recorders (TR) with auto-trigger functionality are used to digitize and store the detailed shape of pulses. The data acquisition (DAQ) system provides sophisticated analysis/data reduction based on real time algorithms, implemented in field programmable gate arrays (FPGA), for Pulse Height Analysis (PHA) while resolving pulse pile-up of digitized pulses. This paper describes a new DAQ system for real-time pulse analysis. The system is based on the Advanced Telecommunications Computing Architecture (TM) (ATCA (TM)) and contains an ix86-based processor blade with up to 40 GFLOPS and a TR module interconnected through PCI Express (PCIe) links. TR module features: (i) 8 channels of 13 bit resolution with accuracy equal or higher than 11 bit to cope with the expected signal-to-noise ratio (SNR) of the input pulses; (ii) up to 500 MSamples/s sampling rate with the possibility to achieve 1 GSamples/s; and (iii) 2 or 4 GB of local memory. The core of the TR module is two FPGAs able to perform real-time processing algorithms such as PHA and pile-up resolution. This will allow data reduction by a factor of at least 6 and eventually spectra output in real-time. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [41] GAMMA-RAY SPECTROSCOPY OF Λ HYPERNUCLEI AT J-PARC
    Koike, T.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2010, 19 (12) : 2505 - 2513
  • [42] Feasibility and design of a solid state gamma-ray detector
    Owens, Alan
    Buis, Ernst-Jan
    EXPERIMENTAL ASTRONOMY, 2006, 21 (01) : 57 - 66
  • [43] Gamma-ray spectroscopy measurements and simulations for uranium mining
    Marchais, T.
    Perot, B.
    Carasco, C.
    Allinei, P-G
    Chaussonnet, P.
    Ma, J-L
    Toubon, H.
    ADVANCEMENTS IN NUCLEAR INSTRUMENTATION MEASUREMENT METHODS AND THEIR APPLICATIONS (ANIMMA 2017), 2018, 170
  • [44] Spectral analysis of young gamma-ray pulsars with Fermi
    Gargano, Fabio
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 630 (01) : 159 - 162
  • [45] Anomalous Thermal Behavior in Microcalorimeter Gamma-Ray Detectors
    Horansky, Robert D.
    Beall, James A.
    Irwin, Kent D.
    Ullom, Joel N.
    LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 : 733 - 736
  • [46] Thallium Bromide Gamma-Ray Spectrometers and Pixel Arrays
    Kim, Hadong
    Ogorodnik, Yaroslav
    Kargar, Alireza
    Cirignano, Leonard
    Thrall, Crystal Lynn
    Koehler, William
    O'Neal, Sean Patrick
    He, Zhong
    Swanberg, Erik
    Payne, Stephen A.
    Squillante, Michael R.
    Shah, Kanai
    FRONTIERS IN PHYSICS, 2020, 8
  • [47] RISING:: Gamma-ray spectroscopy with radioactive beams at GSI
    Doornenbal, P.
    Buerger, A.
    Rudolph, D.
    Grawe, H.
    Huebel, H.
    Regan, P. H.
    Reiter, P.
    Banu, A.
    Beck, T.
    Becker, F.
    Bednarczyk, R.
    Caceres, L.
    Geissel, H.
    Gerl, J.
    Gorska, M.
    Grebosz, J.
    Kavatsyuk, M.
    Kavatsyuk, O.
    Kelic, A.
    Kojouharov, I.
    Kurz, N.
    Lozeva, R.
    Montes, F.
    Prokopowicz, W.
    Saito, N.
    Saito, T.
    Schaffner, H.
    Tashenov, S.
    Weick, H.
    Werner-Malento, E.
    Winkler, M.
    Wollersheim, H. J.
    Al-Khatib, A.
    Andersson, L. -L.
    Atanasova, L.
    Balabanski, D. L.
    Bentley, M. A.
    Benzoni, G.
    Blazhev, A.
    Bracco, A.
    Brambilla, S.
    Brandau, C.
    Bringel, P.
    Brown, J. R.
    Camera, F.
    Chmel, S.
    Clement, E.
    Crespi, F. C. L.
    Fahlander, C.
    Garnsworthy, A. B.
    TOURS SYMPOSIUM ON NUCLEAR PHYSICS VI, 2007, 891 : 99 - +
  • [48] CeBr3 scintillators for gamma-ray spectroscopy
    Shah, KS
    Glodo, J
    Higgins, W
    van Loef, EVD
    Moses, WW
    Derenzo, SE
    Weber, MJ
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2005, 52 (06) : 3157 - 3159
  • [49] GAMMA-RAY SPECTROSCOPY OF A HYPERNUCLEI AT J-PARC
    Koike, T.
    STRANGENESS IN NUCLEAR AND HADRONIC SYSTEMS (SENDAI08), 2010, : 213 - 221
  • [50] Scintisphere -: The shape of things to come in gamma-ray spectroscopy
    Meng, LJ
    Ramsden, D
    Chirkin, VM
    Potapov, VN
    Ivanov, OP
    Ignatov, SM
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (04) : 1681 - 1686