ATCA data acquisition system for gamma-ray spectrometry

被引:30
|
作者
Pereira, R. C. [1 ]
Sousa, J. [1 ]
Fernandes, A. M. [1 ]
Patricio, F. [1 ]
Carvalho, B. [1 ]
Neto, A. [1 ]
Varandas, C. A. F. [1 ]
Gorini, G. [2 ]
Tardocchi, M. [2 ]
Gin, D. [3 ]
Shevelev, A. [3 ]
机构
[1] Univ Tecn Lisboa, IST Ctr Fusao Nucl, Inst Super Tecn, EURATOM Assoc, Lisbon, Portugal
[2] EURATOM ENEA CNR Assoc, Ist Fis Plasma, Milan, Italy
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
关键词
data acquisition; gamma-ray spectroscopy; PHA; pulse processing;
D O I
10.1016/j.fusengdes.2007.10.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The gamma-ray spectrometer JET EP2 (Joint European Torus enhancement project 2) project aims to perform high-resolution gamma spectroscopy at very high count rate (up to few MHz). Traditional analogue electronic has count rate and pulse processing limitations (long dead-time, pile-up challenge). Digital pulse processing (DPP) systems have been shown to have better performance than analogue ones for processing neutrons or/and gamma-ray signals. DPP can synthesize almost any pulse response shape without the signal degradation associated to complex analogue paths. High-speed transient recorders (TR) with auto-trigger functionality are used to digitize and store the detailed shape of pulses. The data acquisition (DAQ) system provides sophisticated analysis/data reduction based on real time algorithms, implemented in field programmable gate arrays (FPGA), for Pulse Height Analysis (PHA) while resolving pulse pile-up of digitized pulses. This paper describes a new DAQ system for real-time pulse analysis. The system is based on the Advanced Telecommunications Computing Architecture (TM) (ATCA (TM)) and contains an ix86-based processor blade with up to 40 GFLOPS and a TR module interconnected through PCI Express (PCIe) links. TR module features: (i) 8 channels of 13 bit resolution with accuracy equal or higher than 11 bit to cope with the expected signal-to-noise ratio (SNR) of the input pulses; (ii) up to 500 MSamples/s sampling rate with the possibility to achieve 1 GSamples/s; and (iii) 2 or 4 GB of local memory. The core of the TR module is two FPGAs able to perform real-time processing algorithms such as PHA and pile-up resolution. This will allow data reduction by a factor of at least 6 and eventually spectra output in real-time. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [31] Towards the first light for a gamma-ray lens
    Laporte, P
    Kohnle, A
    Abrosimov, N
    Bastie, P
    Chambellan, D
    Cordier, B
    Di Cocco, G
    Gizzi, L
    Hamelin, B
    Jean, P
    Laurent, P
    Paltani, S
    Skinner, GK
    Smither, RK
    von Ballmoos, P
    ASTROPHYSICAL LETTERS & COMMUNICATIONS, 1999, 39 (1-6) : 921 - 924
  • [32] Circular polarimetry with gamma-ray tracking detectors
    Tashenov, S.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 640 (01) : 164 - 169
  • [33] Signal variance in gamma-ray detectors - A review
    Devanathan, R.
    Corrales, L. R.
    Gao, F.
    Weber, W. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 565 (02) : 637 - 649
  • [34] Gamma-Ray Source Detection With Small Sensors
    Miller, Kyle
    Dubrawski, Artur
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (04) : 1047 - 1058
  • [35] Evaluation of naturally occurring radioactivity across the State of Kuwait using high-resolution gamma-ray spectrometry
    Bajoga, A. D.
    Alazemi, N.
    Shams, H.
    Regan, P. H.
    Bradley, D. A.
    RADIATION PHYSICS AND CHEMISTRY, 2017, 137 : 203 - 209
  • [36] Radiometric and health risk assessment of building materials collected from Tamil Nadu using gamma-ray spectrometry
    Karthikayini, S.
    Chandrasekaran, A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2024,
  • [37] New FPGA based hardware implementation for JET gamma-ray camera upgrade
    Fernandes, A.
    Pereira, R. C.
    Santos, B.
    Bielecki, J.
    Boltruczyk, G.
    Broslawski, A.
    Carvalho, P. F.
    Dias, R.
    Figueiredo, J.
    Giacomelli, L.
    Gosk, M.
    Kiptily, V.
    Korolczuk, S.
    Murari, A.
    Nocente, M.
    Rigamonti, D.
    Sousa, J.
    Tardocchi, M.
    Urban, A.
    Zychor, I.
    Correia, C. M. B. A.
    Goncalves, B.
    FUSION ENGINEERING AND DESIGN, 2018, 128 : 188 - 192
  • [38] Utilizing artificial neural networks to convert gamma-ray spectra from NaI (Tl) detectors to HPGe detector gamma-ray spectra
    Saeidi, Zohreh
    Afarideh, Hossein
    Ghergherehchi, Mitra
    ANNALS OF NUCLEAR ENERGY, 2024, 200
  • [39] Feasibility and design of a solid state gamma-ray detector
    Alan Owens
    Ernst-Jan Buis
    Experimental Astronomy, 2006, 21 : 57 - 66
  • [40] The EXOGAM array:: A radioactive beam gamma-ray spectrometer
    Simpson, J
    Azaiez, F
    deFrance, G
    Fouan, J
    Gerl, J
    Julin, R
    Korten, W
    Nolan, PJ
    Nyakó, BM
    Sletten, G
    Walker, PM
    ACTA PHYSICA HUNGARICA NEW SERIES-HEAVY ION PHYSICS, 2000, 11 (1-2): : 159 - 188