ATCA data acquisition system for gamma-ray spectrometry

被引:30
|
作者
Pereira, R. C. [1 ]
Sousa, J. [1 ]
Fernandes, A. M. [1 ]
Patricio, F. [1 ]
Carvalho, B. [1 ]
Neto, A. [1 ]
Varandas, C. A. F. [1 ]
Gorini, G. [2 ]
Tardocchi, M. [2 ]
Gin, D. [3 ]
Shevelev, A. [3 ]
机构
[1] Univ Tecn Lisboa, IST Ctr Fusao Nucl, Inst Super Tecn, EURATOM Assoc, Lisbon, Portugal
[2] EURATOM ENEA CNR Assoc, Ist Fis Plasma, Milan, Italy
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
关键词
data acquisition; gamma-ray spectroscopy; PHA; pulse processing;
D O I
10.1016/j.fusengdes.2007.10.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The gamma-ray spectrometer JET EP2 (Joint European Torus enhancement project 2) project aims to perform high-resolution gamma spectroscopy at very high count rate (up to few MHz). Traditional analogue electronic has count rate and pulse processing limitations (long dead-time, pile-up challenge). Digital pulse processing (DPP) systems have been shown to have better performance than analogue ones for processing neutrons or/and gamma-ray signals. DPP can synthesize almost any pulse response shape without the signal degradation associated to complex analogue paths. High-speed transient recorders (TR) with auto-trigger functionality are used to digitize and store the detailed shape of pulses. The data acquisition (DAQ) system provides sophisticated analysis/data reduction based on real time algorithms, implemented in field programmable gate arrays (FPGA), for Pulse Height Analysis (PHA) while resolving pulse pile-up of digitized pulses. This paper describes a new DAQ system for real-time pulse analysis. The system is based on the Advanced Telecommunications Computing Architecture (TM) (ATCA (TM)) and contains an ix86-based processor blade with up to 40 GFLOPS and a TR module interconnected through PCI Express (PCIe) links. TR module features: (i) 8 channels of 13 bit resolution with accuracy equal or higher than 11 bit to cope with the expected signal-to-noise ratio (SNR) of the input pulses; (ii) up to 500 MSamples/s sampling rate with the possibility to achieve 1 GSamples/s; and (iii) 2 or 4 GB of local memory. The core of the TR module is two FPGAs able to perform real-time processing algorithms such as PHA and pile-up resolution. This will allow data reduction by a factor of at least 6 and eventually spectra output in real-time. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [21] Gamma-ray spectroscopy of isobaric multiplets
    Bentley, M. A.
    Frontiers in Nuclear Structure Astrophysics, and Reactions: FINUSTAR, 2006, 831 : 31 - 38
  • [22] Development of a gamma-ray box (GARBO)
    Moore, EF
    Ahmad, I
    Amman, J
    Carpenter, MP
    Fischer, SM
    Janssens, RVF
    Khoo, TL
    Lauritsen, T
    Lister, CJ
    Mukherjee, G
    Nisius, D
    Sangsingkeow, P
    Sienko, T
    Truett, B
    Underwood, TA
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 505 (1-2) : 163 - 166
  • [23] Wavelet analysis of gamma-ray spectra
    Sullivan, CJ
    Garner, SE
    Butterfield, KB
    2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 281 - 286
  • [24] A Modular Pipelined Processor for High Resolution Gamma-Ray Spectroscopy
    Veiga, Alejandro
    Grunfeld, Christian
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (01) : 297 - 303
  • [25] A Sub-Sampling Approach for Data Acquisition in Gamma Ray Emission Tomography
    Fysikopoulos, Eleftherios
    Kopsinis, Yannis
    Georgiou, Maria
    Loudos, George
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (03) : 1399 - 1407
  • [26] High Resolution Gamma-Ray Spectroscopy at GANIL
    de France, G.
    XXXVI BRAZILIAN WORKSHOP ON NUCLEAR PHYSICS, 2014, 1625 : 10 - 16
  • [27] Overview of the Gamma-Ray Energy Tracking: GRETA
    Fallon, P.
    FISSION AND PROPERTIES OF NEUTRON-RICH NUCLEI, 2018, : 151 - 158
  • [28] Xenon gamma-ray spectrometers: development and applications
    Novikov, Alexander S.
    Ulin, Sergey E.
    Dmitrenko, Valery V.
    Chernysheva, Irina V.
    Grachev, Victor M.
    Krivova, Kira V.
    Shustov, Alexander E.
    Uteshev, Ziyaetdin M.
    Vlasik, Konstantin F.
    HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS XXI, 2019, 11114
  • [29] Gamma-ray spectroscopy of hypernuclei - present and future
    Tamura, H.
    Hosomi, K.
    Bufalino, S.
    Chiga, N.
    Evtoukhovitch, P.
    Feliciello, A.
    Honda, R.
    Koike, T.
    Ma, Y.
    Miwa, K.
    Sasaki, A.
    Sasaki, Y.
    Shirotori, K.
    Tanida, K.
    Tsamalaidze, Z.
    Ukai, M.
    Yamamoto, T. O.
    Yang, S. B.
    NUCLEAR PHYSICS A, 2013, 914 : 99 - 108
  • [30] ATCA/AXIe compatible board for fast control and data acquisition in nuclear fusion experiments
    Batista, A. J. N.
    Leong, C.
    Bexiga, V.
    Rodrigues, A. P.
    Combo, A.
    Carvalho, B. B.
    Fortunato, J.
    Correia, M.
    Teixeira, J. P.
    Teixeira, I. C.
    Sousa, J.
    Goncalves, B.
    Varandas, C. A. F.
    FUSION ENGINEERING AND DESIGN, 2012, 87 (12) : 2131 - 2135