ATCA data acquisition system for gamma-ray spectrometry

被引:30
|
作者
Pereira, R. C. [1 ]
Sousa, J. [1 ]
Fernandes, A. M. [1 ]
Patricio, F. [1 ]
Carvalho, B. [1 ]
Neto, A. [1 ]
Varandas, C. A. F. [1 ]
Gorini, G. [2 ]
Tardocchi, M. [2 ]
Gin, D. [3 ]
Shevelev, A. [3 ]
机构
[1] Univ Tecn Lisboa, IST Ctr Fusao Nucl, Inst Super Tecn, EURATOM Assoc, Lisbon, Portugal
[2] EURATOM ENEA CNR Assoc, Ist Fis Plasma, Milan, Italy
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
关键词
data acquisition; gamma-ray spectroscopy; PHA; pulse processing;
D O I
10.1016/j.fusengdes.2007.10.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The gamma-ray spectrometer JET EP2 (Joint European Torus enhancement project 2) project aims to perform high-resolution gamma spectroscopy at very high count rate (up to few MHz). Traditional analogue electronic has count rate and pulse processing limitations (long dead-time, pile-up challenge). Digital pulse processing (DPP) systems have been shown to have better performance than analogue ones for processing neutrons or/and gamma-ray signals. DPP can synthesize almost any pulse response shape without the signal degradation associated to complex analogue paths. High-speed transient recorders (TR) with auto-trigger functionality are used to digitize and store the detailed shape of pulses. The data acquisition (DAQ) system provides sophisticated analysis/data reduction based on real time algorithms, implemented in field programmable gate arrays (FPGA), for Pulse Height Analysis (PHA) while resolving pulse pile-up of digitized pulses. This paper describes a new DAQ system for real-time pulse analysis. The system is based on the Advanced Telecommunications Computing Architecture (TM) (ATCA (TM)) and contains an ix86-based processor blade with up to 40 GFLOPS and a TR module interconnected through PCI Express (PCIe) links. TR module features: (i) 8 channels of 13 bit resolution with accuracy equal or higher than 11 bit to cope with the expected signal-to-noise ratio (SNR) of the input pulses; (ii) up to 500 MSamples/s sampling rate with the possibility to achieve 1 GSamples/s; and (iii) 2 or 4 GB of local memory. The core of the TR module is two FPGAs able to perform real-time processing algorithms such as PHA and pile-up resolution. This will allow data reduction by a factor of at least 6 and eventually spectra output in real-time. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 345
页数:5
相关论文
共 50 条
  • [1] ATCA Fast Data Acquisition and Processing System for JET Gamma-Ray Cameras Upgrade Diagnostic
    Pereira, R. C.
    Fernandes, A. M.
    Neto, A.
    Sousa, J.
    Batista, A. J.
    Carvalho, B. B.
    Correia, C. M. B. A.
    Varandas, C. A. F.
    2009 16TH IEEE-NPSS REAL TIME CONFERENCE, 2009, : 420 - +
  • [2] ATCA Fast Data Acquisition and Processing System for JET Gamma-Ray Cameras Upgrade Diagnostic
    Pereira, Rita Costa
    Fernandes, Ana Maria
    Neto, Andre C.
    Sousa, Jorge
    Batista, Antonio J.
    Carvalho, Bernardo B.
    Correia, Carlos M. B. A.
    Varandas, Carlos A. F.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2010, 57 (02) : 683 - 687
  • [3] Digital Acquisition in High Count Rate Gamma-Ray Spectrometry
    Korolczuk, Stefan
    Mianowski, Slawomir
    Rzadkiewicz, Jacek
    Sibczynski, Pawel
    Swiderski, Lukasz
    Zychor, Izabella
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2016, 63 (03) : 1668 - 1673
  • [4] The control and data acquisition software for the gamma-ray spectroscopy ATCA sub-systems of the JET-EP2 enhancements
    Neto, A.
    Sousa, J.
    Carvalho, B.
    Fernandes, H.
    Pereira, R. C.
    Fernandes, A. M.
    Varandas, C.
    Gorini, G.
    Tardocchi, M.
    Gin, D.
    Shevelev, A.
    Kneupner, K.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (2-3) : 346 - 349
  • [5] Data acquisition architecture and online processing system for the HAWC gamma-ray observatory
    Abeysekara, A. U.
    Alfaro, R.
    Alvarez, C.
    Alvarez, J. D.
    Arceo, R.
    Arteaga-Velazquez, J. C.
    Solares, H. A. Ayala
    Barber, A. S.
    Baughman, B. M.
    Bautista-Elivar, N.
    Gonzalez, J. Becerra
    Belmont-Moreno, E.
    BenZvi, S. Y.
    Berley, D.
    Bonilla Rosales, M.
    Braun, J.
    Caballero-Lopez, R. A.
    Caballero-Mora, K. S.
    Carraminana, A.
    Castillo, M.
    Cotti, U.
    Cotzomi, J.
    de la Fuente, E.
    De Leon, C.
    DeYoung, T.
    Diaz-Cruz, J.
    Diaz Hernandez, R.
    Diaz-Velez, J. C.
    Dingus, B. L.
    DuVernois, M. A.
    Ellsworth, R. W.
    Fiorino, D. W.
    Fraija, N.
    Galindo, A.
    Garfias, F.
    Gonzalez, M. M.
    Goodman, J. A.
    Grabski, V.
    Gussert, M.
    Hampel-Arias, Z.
    Harding, J. P.
    Hui, C. M.
    Huntemeyer, P.
    Imran, A.
    Iriarte, A.
    Karn, P.
    Kieda, D.
    Kunde, G. J.
    Lara, A.
    Lauer, R. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 888 : 138 - 146
  • [6] Design of data acquisition system and algorithm research for omnidirectional gamma-ray positioning equipment
    Hu Ting-Ting
    Shuai Lei
    Wang Pei-Lin
    Feng Bao-Tong
    Zhang Yi-Wen
    Sun Yun-Hua
    Li Xiao-Hui
    Wei Shu-Jun
    Shan Bao-Ci
    Wei Long
    CHINESE PHYSICS C, 2014, 38 (01)
  • [7] Design of data acquisition system and algorithm research for omnidirectional gamma-ray positioning equipment
    胡婷婷
    帅磊
    王培林
    丰宝桐
    张译文
    孙芸华
    李晓辉
    魏书军
    单保慈
    魏龙
    Chinese Physics C, 2014, (01) : 95 - 99
  • [8] Online gamma-ray spectroscopy acquisition
    Yang, Xue
    Garcia, Roel
    ANNALS OF NUCLEAR ENERGY, 2018, 115 : 105 - 115
  • [9] Control and data acquisition software upgrade for JET gamma-ray diagnostics
    Santos, B.
    Fernandes, A.
    Pereira, R. C.
    Neto, A.
    Bielecki, J.
    Craciunescu, T.
    Figueiredo, J.
    Kiptily, V.
    Murari, A.
    Nocente, M.
    Rigamonti, D.
    Sousa, J.
    Tardocchi, M.
    Giacomelli, L.
    Zychor, I.
    Broslawski, A.
    Gosk, M.
    Korolczuk, S.
    Urban, A.
    Boltruczyk, G.
    Correia, C. M. B. A.
    Goncalves, B.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    FUSION ENGINEERING AND DESIGN, 2018, 128 : 117 - 121
  • [10] INTERPRETATION OF AIRBORNE GAMMA-RAY SPECTROMETRY DATA FROM SUDBURY, ONTARIO
    SINGH, V
    MOON, WM
    MILLER, HG
    SO, CS
    CIM BULLETIN, 1994, 87 (977): : 31 - 35