Hyperbolic cone metrics and billiards

被引:0
作者
Erlandsson, Viveka [1 ,2 ]
Leininger, Christopher J. [3 ]
Sadanand, Chandrika [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol, England
[2] UiT Arctic Univ Norway, Dept Math & Stat, Tromso, Norway
[3] Rice Univ, Dept Math, Houston, TX USA
[4] Bowdoin Coll, Dept Math, Brunswick, ME USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Hyperbolic; Cone metric; Surface; Billiard; Rigidity; Geodesic current; CODING CHAOTIC BILLIARDS; MARKED LENGTH-SPECTRUM; RIGIDITY; CURVATURE; SURFACES;
D O I
10.1016/j.aim.2022.108662
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:74
相关论文
共 24 条
[1]  
[Anonymous], 1997, Princeton Math. Ser.
[2]   MARKED-LENGTH-SPECTRAL RIGIDITY FOR FLAT METRICS [J].
Bankovic, Anja ;
Leininger, Christopher J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) :1867-1884
[3]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR
[4]  
Bogdanov M., 2016, 32 INT S COMP GEOM B, V51, P20
[5]  
Bridson M. R., 2013, Metric Spaces of Non-positive Curvature, V319
[6]   Marked Length Spectrum Rigidity in Non-Positive Curvature with Singularities [J].
Constantine, David .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (06) :2337-2361
[7]   THE MARKED LENGTH-SPECTRUM OF A SURFACE OF NONPOSITIVE CURVATURE [J].
CROKE, C ;
FATHI, A ;
FELDMAN, J .
TOPOLOGY, 1992, 31 (04) :847-855
[8]   RIGIDITY FOR SURFACES OF NONPOSITIVE CURVATURE [J].
CROKE, CB .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :150-169
[9]   CONFORMALLY NATURAL EXTENSION OF HOMEOMORPHISMS OF THE CIRCLE [J].
DOUADY, A ;
EARLE, CJ .
ACTA MATHEMATICA, 1986, 157 (1-2) :23-48
[10]   You can hear the shape of a billiard table: Symbolic dynamics and rigidity for flat surfaces [J].
Duchin, Moon ;
Erlandsson, Viveka ;
Leininger, Christopher J. ;
Sadanand, Chandrika .
COMMENTARII MATHEMATICI HELVETICI, 2021, 96 (03) :421-463