Numerical model of particle deposition on fin surface of heat exchanger

被引:52
作者
Zhan, Feilong [1 ]
Zhuang, Dawei [1 ]
Ding, Guoliang [1 ]
Tang, Jiajun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
来源
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID | 2016年 / 72卷
基金
美国国家科学基金会;
关键词
Heat exchanger; Particle deposition; Particle removal; Fin surface; Numerical model; WAVY-FIN; FRICTION CHARACTERISTICS; VENTILATION DUCT; AIR-CONDITIONERS; FOULING MODEL; FLOW; IMPACT; FLUID; CFD; SIMULATION;
D O I
10.1016/j.ijrefrig.2016.07.015
中图分类号
O414.1 [热力学];
学科分类号
摘要
Dust particle deposition on fin surface has a significant influence on the performance of fin-and-tube heat exchangers, and the purpose of this study is to develop a numerical model for predicting the particle deposition rate on fin surface. In the model, the particle trajectories were calculated by the particle motion equation; the particle deposition on the fin surface was described based on the critical impact angle and the critical sticking velocity of incident particles; the particle deposition on the formed fouling layer was described based on the critical impact angle, the critical sticking velocity and the critical removal velocity of incident particles. The particle distributions on fin surface predicted by the model agree well with the images captured in the visualization experiment. The predicted particle deposition weight per unit area can describe 88% of the experimental data within a deviation of +/- 20% and the mean deviation is 12.8%. (C) 2016 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 48 条
[1]   Modelling the impaction of a micron particle with a powdery layer [J].
Abd-Elhady, M. S. ;
Rindt, C. C. M. ;
Wijers, J. G. ;
van Steenhoven, A. A. .
POWDER TECHNOLOGY, 2006, 168 (03) :111-124
[2]   Contact time of an incident particle hitting a 2D bed of particles [J].
Abd-Elhady, M. S. ;
Rindt, C. C. M. ;
van Steenhoven, A. A. .
POWDER TECHNOLOGY, 2009, 191 (03) :315-326
[3]   Minimum gas speed in heat exchangers to avoid particulate fouling [J].
Abd-Elhady, MS ;
Rindt, CCM ;
Wijers, JG ;
van Steenhoven, AA ;
Bramer, EA ;
van der Meer, TH .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2004, 47 (17-18) :3943-3955
[4]   Characteristics of air-side particulate fouling materials in finned-tube heat exchangers of air conditioners [J].
Ahn, YC ;
Lee, JK .
PARTICULATE SCIENCE AND TECHNOLOGY, 2005, 23 (03) :297-307
[5]   An experimental study of the air-side particulate fouling in fin-and-tube heat exchangers of air conditioners [J].
Ahn, YC ;
Cho, JM ;
Shin, HS ;
Hwang, YJ ;
Lee, CG ;
Lee, JK ;
Lee, HU ;
Kang, TW .
KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2003, 20 (05) :873-877
[6]  
Beek M. C., 2006, POWDER TECHNOL, V165, P53, DOI DOI 10.1016/J.P0WTEC.2006.03.008
[7]   Air-side particulate fouling of microchannel heat exchangers: Experimental comparison of air-side pressure drop and heat transfer with plate-fin heat exchanger [J].
Bell, Ian H. ;
Groll, Eckhard A. .
APPLIED THERMAL ENGINEERING, 2011, 31 (05) :742-749
[8]   FINITE-ELEMENT ANALYSIS OF COUPLED CONDUCTION AND CONVECTION IN REFRIGERATED TRANSPORT [J].
COMINI, G ;
CORTELLA, G ;
SARO, O .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 1995, 18 (02) :123-131
[9]   Numerical simulation of flow and heat transfer characteristics in wavy fin-and-tube heat exchanger with combined longitudinal vortex generators [J].
Gong, Jianying ;
Min, Chunhua ;
Qi, Chengying ;
Wang, Enyu ;
Tian, Liting .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2013, 43 :53-56
[10]   A parameter study of tube bundle heat exchangers for fouling rate reduction [J].
Han, Hui ;
He, Ya-Ling ;
Tao, Wen-Quan ;
Li, Yin-Shi .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 72 :210-221