Electro-oxidation of ethanol on Pt/C, Rh/C, and Pt/Rh/C-based electrocatalysts investigated by on-line DEMS

被引:52
作者
Cantane, D. A. [1 ]
Ambrosio, W. F. [1 ]
Chatenet, M. [2 ]
Lima, F. H. B. [1 ]
机构
[1] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[2] U Joseph Fourier, Grenoble INP, U Savoie, LEPMI,CNRS,UMR 5279, F-38402 St Martin Dheres, France
基金
巴西圣保罗研究基金会;
关键词
Ethanol electro-oxidation; C-C bond cleave; Platinum-Rhodium electrocatalyst; On-line DEMS; FUEL-CELL; ELECTROCHEMICAL OXIDATION; METHANOL ELECTROOXIDATION; STRUCTURE-SENSITIVITY; PLATINUM; CARBON; ELECTRODES; PTRU; POLYCRYSTALLINE; ACETALDEHYDE;
D O I
10.1016/j.jelechem.2012.05.024
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The ethanol electro-oxidation reaction was studied on carbon-supported Pt, Rh, and on Pt overlayers deposited on Rh nanoparticles. The synthesized electrocatalysts were characterized by TEM and XRD. The reaction products were monitored by on-line DEMS experiments. Potentiodynamic curves showed higher overall reaction rate for Pt/C when compared to that for Rh/C. However, on-line DEMS measurements revealed higher average current efficiencies for complete ethanol electro-oxidation to CO2 on Rh/C. The average current efficiencies for CO2 formation increased with temperature and with the decrease in the ethanol concentration. The total amount of CO2, on the other hand, was slightly affected by the temperature and ethanol concentration. Additionally, the CO2 signal was observed only in the positive-going scan, none being observed in the negative-going scan, evidencing that the C-C bond breaking occurs only at lower potentials. Thus, the formation of CO2 mainly resulted from oxidative removal of adsorbed CO and CHx,ad species generated at the lower potentials, instead of the electrochemical oxidation of bulk ethanol molecules. The acetaldehyde mass signal, however, was greatly favored after increasing the ethanol concentration from 0.01 to 0.1 mol L-1, on both electrocatalysts, indicating that it is the major reaction product. For the Pt/Rh/C-based electrocatalysts, the Faradaic current and the conversion efficiency for CO2 formation was increased by adjusting the amount of Pt on the surface of the Rh/C nanoparticles. The higher conversion efficiency for CO2 formation on the Pt1Rh/C material was ascribed to its faster and more extensive ethanol deprotonation on the Pt-Rh sites, producing adsorbed intermediates in which the C-C bond cleavage is facilitated. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 55 条
[1]   Formation of methylformate during methanol oxidation revisited: The mechanism [J].
Abd-El-Latif, A. A. ;
Baltruschat, H. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2011, 662 (01) :204-212
[2]   Electrooxidation of ethanol at polycrystalline and platinum stepped single crystals A study by differential electrochemical mass spectrometry [J].
Abd-El-Latif, A. A. ;
Mostafa, E. ;
Huxter, S. ;
Attard, G. ;
Baltruschat, H. .
ELECTROCHIMICA ACTA, 2010, 55 (27) :7951-7960
[3]  
BITTINSCATTANEO B, 1991, ELECTROANALYTICAL CH, V17, P181
[4]   Metal monolayer deposition by replacement of metal adlayers on electrode surfaces [J].
Brankovic, SR ;
Wang, JX ;
Adzic, RR .
SURFACE SCIENCE, 2001, 474 (1-3) :L173-L179
[5]   The influence of PtRu atomic composition on the yields of ethanol oxidation: A study by in situ FTIR spectroscopy [J].
Camara, GA ;
de Lima, RB ;
Iwasita, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 585 (01) :128-131
[6]   Parallel pathways of ethanol oxidation: The effect of ethanol concentration [J].
Camara, GA ;
Iwasita, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 578 (02) :315-321
[7]   Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells [J].
Camara, GA ;
Giz, MJ ;
Paganin, VA ;
Ticianelli, EA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 537 (1-2) :21-29
[8]   Anode materials for low-temperature fuel cells: A density functional theory study [J].
Christoffersen, E ;
Liu, P ;
Ruban, A ;
Skriver, HL ;
Norskov, JK .
JOURNAL OF CATALYSIS, 2001, 199 (01) :123-131
[9]   Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes [J].
Colmati, Flavio ;
Tremiliosi-Filho, Germano ;
Gonzalez, Ernesto R. ;
Berna, Antonio ;
Herrero, Enrique ;
Feliu, Juan M. .
FARADAY DISCUSSIONS, 2008, 140 :379-397
[10]   The role of the steps in the cleavage of the C-C bond during ethanol oxidation on platinum electrodes [J].
Colmati, Flavio ;
Tremiliosi-Filho, Germano ;
Gonzalez, Ernesto R. ;
Berna, Antonio ;
Herrero, Enrique ;
Feliu, Juan M. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (40) :9114-9123