Border Basis Detection is NP-complete

被引:0
作者
Ananth, Prabhanjan V. [1 ]
Dukkipati, Ambedkar [1 ]
机构
[1] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore, Karnataka, India
来源
ISSAC 2011: PROCEEDINGS OF THE 36TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION | 2011年
关键词
Border bases; Zero-dimensional ideals; Complexity; NP-completeness; BASES;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Border basis detection (BBD) is described as follows: given a set of generators of an ideal, decide whether that set of generators is a border basis of the ideal with respect to some order ideal. The motivation for this problem comes from a similar problem related to Grobner bases termed as Grobner basis detection (GBD) which was proposed by Gritzmann and Sturmfels (1993). GBD was shown to be NP-hard by Sturmfels and Wiegelmann (1996). In this paper, we investigate the computational complexity of BBD and show that it is NP-complete.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 12 条
[1]  
AUZINGER W, 1988, INT SCHRIFTENREIHE N, V86, P11
[2]  
Braun G., 2010, ARXIV09121502V2
[3]   MINKOWSKI ADDITION OF POLYTOPES - COMPUTATIONAL-COMPLEXITY AND APPLICATIONS TO GROBNER BASES [J].
GRITZMANN, P ;
STURMFELS, B .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (02) :246-269
[4]  
Kehrein A, 2005, ALGORITHM COMP MATH, V14, P169
[5]   Computing border bases [J].
Kehrein, A ;
Kreuzer, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 205 (02) :279-295
[6]   Characterizations of border bases [J].
Kehrein, A ;
Kreuzer, M .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 196 (2-3) :251-270
[7]  
Kreuzer M., 2005, Computational Commutative Algebra, V2
[8]  
Mourrain B, 1999, LECT NOTES COMPUT SC, V1719, P430
[9]  
Mourrain B., 2005, P INT S SYMB ALG COM, P253
[10]   Stable normal forms for polynomial system solving [J].
Mourrain, Bernard ;
Trebuchet, Philippe .
THEORETICAL COMPUTER SCIENCE, 2008, 409 (02) :229-240