Tensor norms and the classical communication complexity of nonlocal quantum measurement

被引:13
作者
Shi, Yaoyun [1 ]
Zhu, Yufan [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
quantum entanglement; classical simulation; communication complexity; tensor norms; Bell inequality;
D O I
10.1137/050644768
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We initiate the study of quantifying nonlocality of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds in terms of some tensor norms of the measurement operator. As applications, we show that (a) if the amount of communication is a constant, then quantum and classical communication protocols with an unlimited amount of shared entanglement or shared randomness compute the same class of functions; and (b) it requires only a constant amount of communication to classically generate an approximation of the output distribution resulting from local measurements on an entangled quantum state, as long as the number of measurement outcomes is a constant.
引用
收藏
页码:753 / 766
页数:14
相关论文
共 44 条
[1]  
Aharonov D., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P20, DOI 10.1145/276698.276708
[2]  
[Anonymous], 1997, COMMUNICATION COMPLE
[3]  
[Anonymous], 1993, P 34 ANN S FDN COMP
[4]   Bell inequalities with auxiliary communication [J].
Bacon, D ;
Toner, BF .
PHYSICAL REVIEW LETTERS, 2003, 90 (15) :4
[5]  
Bell J. S., 1964, Physics Physique Fizika, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[6]  
Bennett C. H., 1984, P IEEE INT C COMP SY, DOI DOI 10.1016/J.TCS.2014.05.025
[7]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[8]   On the capacities of bipartite Hamiltonians and unitary gates [J].
Bennett, CH ;
Harrow, AW ;
Leung, DW ;
Smolin, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (08) :1895-1911
[9]  
Bohm David, 1951, QUANTUM THEORY, P611
[10]   Cost of exactly simulating quantum entanglement with classical communication [J].
Brassard, G ;
Cleve, R ;
Tapp, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (09) :1874-1877