Singular limit of the porous medium equation with a drift

被引:14
作者
Kim, Inwon [1 ]
Pozar, Norbert [2 ]
Woodhouse, Brent [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Kanazawa Univ, Fac Math & Phys, Inst Sci & Engn, Kanazawa, Ishikawa 9201192, Japan
基金
日本学术振兴会;
关键词
Porous medium equation; Hele-Shaw problem; Singular limit; Viscosity solutions; Tumor growth; HELE-SHAW PROBLEM; VISCOSITY SOLUTIONS; DIFFUSION; REGULARITY; UNIQUENESS; EXISTENCE; EVOLUTION; DYNAMICS; FLOWS; MODEL;
D O I
10.1016/j.aim.2019.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the "stiff pressure limit" of a nonlinear drift-diffusion equation, where the density is constrained to stay below the maximal value one. The challenge lies in the presence of a drift and the consequent lack of monotonicity in time. In the limit a Hele-Shaw-type free boundary problem emerges, which describes the evolution of the congested zone where density equals one. We discuss pointwise convergence of the densities as well as the BV regularity of the limiting free boundary. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:682 / 732
页数:51
相关论文
共 50 条
  • [41] Vacuum solution and quasineutral limit of semiconductor drift-diffusion equation
    Ri, Jinmyong
    Huang, Feimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) : 1523 - 1538
  • [42] CONSERVATION LAWS WITH NONLOCAL VELOCITY: THE SINGULAR LIMIT PROBLEM
    Friedrich, Jan
    Gottliich, Simone
    Keimer, Alexander
    Pflug, Lukas
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2024, 84 (02) : 497 - 522
  • [43] Adaptive finite element solution of the porous medium equation in pressure formulation
    Cuong Ngo
    Huang, Weizhang
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (03) : 1224 - 1242
  • [44] Singular Limit of the Generalized Burgers Equation with Absorption
    Hui, Kin Ming
    Kim, Sunghoon
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 809 - 822
  • [45] Scalar elliptic equations with a singular drift
    Chernobai, Misha
    Shilkin, Timofey
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (01) : 9 - 33
  • [46] Degenerate and Singular Porous Medium Type Equations with Measure Data
    Gianazza, Ugo
    ELLIPTIC AND PARABOLIC EQUATIONS, 2015, 119 : 139 - 158
  • [47] Singular Limit of the Generalized Burgers Equation with Absorption
    Kin Ming Hui
    Sunghoon Kim
    Journal of Dynamics and Differential Equations, 2020, 32 : 809 - 822
  • [48] Dispersal towards food: the singular limit of an Allen-Cahn equation
    Hilhorst, Danielle
    Kim, Yong-Jung
    Kwon, Dohyun
    Thanh Nam Nguyen
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (03) : 531 - 565
  • [49] On the stochastic porous medium equation
    Kim, JU
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 220 (01) : 163 - 194
  • [50] A fractional porous medium equation
    de Pablo, Arturo
    Quiros, Fernando
    Rodriguez, Ana
    Luis Vazquez, Juan
    ADVANCES IN MATHEMATICS, 2011, 226 (02) : 1378 - 1409