We study the "stiff pressure limit" of a nonlinear drift-diffusion equation, where the density is constrained to stay below the maximal value one. The challenge lies in the presence of a drift and the consequent lack of monotonicity in time. In the limit a Hele-Shaw-type free boundary problem emerges, which describes the evolution of the congested zone where density equals one. We discuss pointwise convergence of the densities as well as the BV regularity of the limiting free boundary. (C) 2019 Elsevier Inc. All rights reserved.
机构:
Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
Carstea, Catalin, I
Ghosh, Tuhin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bielefeld, Dept Math, D-33615 Bielefeld, GermanySichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
Ghosh, Tuhin
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USA
Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Peoples R ChinaSichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
机构:
Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Grillo, Gabriele
Muratori, Matteo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Cesare Saldini 50, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
Muratori, Matteo
Punzo, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat F Enriques, Via Cesare Saldini 50, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy