Singular limit of the porous medium equation with a drift

被引:14
作者
Kim, Inwon [1 ]
Pozar, Norbert [2 ]
Woodhouse, Brent [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Kanazawa Univ, Fac Math & Phys, Inst Sci & Engn, Kanazawa, Ishikawa 9201192, Japan
基金
日本学术振兴会;
关键词
Porous medium equation; Hele-Shaw problem; Singular limit; Viscosity solutions; Tumor growth; HELE-SHAW PROBLEM; VISCOSITY SOLUTIONS; DIFFUSION; REGULARITY; UNIQUENESS; EXISTENCE; EVOLUTION; DYNAMICS; FLOWS; MODEL;
D O I
10.1016/j.aim.2019.04.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the "stiff pressure limit" of a nonlinear drift-diffusion equation, where the density is constrained to stay below the maximal value one. The challenge lies in the presence of a drift and the consequent lack of monotonicity in time. In the limit a Hele-Shaw-type free boundary problem emerges, which describes the evolution of the congested zone where density equals one. We discuss pointwise convergence of the densities as well as the BV regularity of the limiting free boundary. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:682 / 732
页数:51
相关论文
共 50 条
  • [31] On the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure
    Kissling, Frederike
    Karlsen, Kenneth H.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (7-8): : 678 - 689
  • [32] Singular limit problem of the Camassa-Holm type equation
    Hwang, Seok
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) : 74 - 84
  • [33] AN INVERSE PROBLEM FOR THE POROUS MEDIUM EQUATION WITH PARTIAL DATA AND A POSSIBLY SINGULAR ABSORPTION TERM
    Carstea, Catalin, I
    Ghosh, Tuhin
    Uhlmann, Gunther
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (01) : 162 - 185
  • [34] ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO THE FRACTIONAL POROUS MEDIUM EQUATION WITH VARIABLE DENSITY
    Grillo, Gabriele
    Muratori, Matteo
    Punzo, Fabio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (12) : 5927 - 5962
  • [35] An optimal Liouville theorem for the porous medium equation
    Araujo, Damiao J.
    Teymurazyan, Rafayel
    ARCHIV DER MATHEMATIK, 2022, 118 (04) : 427 - 433
  • [36] Large time behavior of a two phase extension of the porous medium equation
    Oulhaj, Ahmed Ait Hammou
    Cances, Clement
    Chainais-Hillairet, Claire
    Laurencot, Philippe
    INTERFACES AND FREE BOUNDARIES, 2019, 21 (02) : 199 - 229
  • [37] The mesa problem for the fractional porous medium equation
    Vazquez, Juan Luis
    INTERFACES AND FREE BOUNDARIES, 2015, 17 (02) : 263 - 288
  • [38] The porous medium equation with a concentrated nonlinear source
    Wang, Shuhe
    Yin, Jingxue
    Ke, Yuanyuan
    APPLICABLE ANALYSIS, 2012, 91 (01) : 141 - 156
  • [39] The porous medium equation with measure data on negatively curved Riemannian manifolds
    Grillo, Gabriele
    Muratori, Matteo
    Punzo, Fabio
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (11) : 2769 - 2812
  • [40] On the Solutions of a Porous Medium Equation with Exponent Variable
    Zhan, Huashui
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019