The energy density in the planar Ising model

被引:43
作者
Hongler, Clement [1 ]
Smirnov, Stanislav [2 ,3 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Geneva, Sect Math, CH-1211 Geneva 4, Switzerland
[3] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199178, Russia
基金
美国国家科学基金会;
关键词
CONFORMAL-INVARIANCE; CRYSTAL STATISTICS;
D O I
10.1007/s11511-013-0102-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the critical Ising model on the square lattice in bounded simply connected domains with + and free boundary conditions. We relate the energy density of the model to a discrete fermionic correlator and compute its scaling limit by discrete complex analysis methods. As a consequence, we obtain a simple exact formula for the scaling limit of the energy field one-point function in terms of the hyperbolic metric. This confirms the predictions originating in physics, but also provides a higher precision.
引用
收藏
页码:191 / 225
页数:35
相关论文
共 25 条
  • [1] The energy density of an Ising half-plane lattice
    Assis, M.
    McCoy, B. M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (09)
  • [2] Boivin Jerome., 1989, Baxter
  • [3] The Critical Z-Invariant Ising Model via Dimers: Locality Property
    Boutillier, Cedric
    de Tiliere, Beatrice
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (02) : 473 - 516
  • [4] The critical Z-invariant Ising model via dimers: the periodic case
    Boutillier, Cedric
    de Tiliere, Beatrice
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (3-4) : 379 - 413
  • [5] CONFORMAL THEORY OF THE 2-DIMENSIONAL ISING-MODEL WITH HOMOGENEOUS BOUNDARY-CONDITIONS AND WITH DISORDERED BOUNDARY FIELDS
    BURKHARDT, TW
    GUIM, I
    [J]. PHYSICAL REVIEW B, 1993, 47 (21): : 14306 - 14311
  • [6] CONFORMAL-INVARIANCE AND SURFACE CRITICAL-BEHAVIOR
    CARDY, JL
    [J]. NUCLEAR PHYSICS B, 1984, 240 (04) : 514 - 532
  • [7] CHELKAK D., 2012, PREPRINT
  • [8] Universality in the 2D Ising model and conformal invariance of fermionic observables
    Chelkak, Dmitry
    Smirnov, Stanislav
    [J]. INVENTIONES MATHEMATICAE, 2012, 189 (03) : 515 - 580
  • [9] Discrete complex analysis on isoradial graphs
    Chelkak, Dmitry
    Smirnov, Stanislav
    [J]. ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1590 - 1630
  • [10] Di Francesco P., 1997, CONFORMAL FIELD THEO