Nonlinear Schrodinger wave equation with linear quantum behavior

被引:29
作者
Richardson, Chris D. [1 ]
Schlagheck, Peter [1 ]
Martin, John [1 ]
Vandewalle, Nicolas [1 ]
Bastin, Thierry [1 ]
机构
[1] Univ Liege, Dept Phys, B-4000 Liege, Belgium
来源
PHYSICAL REVIEW A | 2014年 / 89卷 / 03期
关键词
Nonlinear equations - Mathematical transformations - Control nonlinearities - Wave equations;
D O I
10.1103/PhysRevA.89.032118
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that a nonlinear Schrodinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schrodinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantumlike features appear and is equivalent to scaling Planck's constant.
引用
收藏
页数:4
相关论文
共 11 条
[1]   Wave-particle duality of C60 molecules [J].
Arndt, M ;
Nairz, O ;
Vos-Andreae, J ;
Keller, C ;
van der Zouw, G ;
Zeilinger, A .
NATURE, 1999, 401 (6754) :680-682
[2]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[3]   Single-particle diffraction and interference at a macroscopic scale [J].
Couder, Yves ;
Fort, Emmanuel .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[4]  
Landau L. D., 1969, Mechanics
[5]   Entangling Macroscopic Diamonds at Room Temperature [J].
Lee, K. C. ;
Sprague, M. R. ;
Sussman, B. J. ;
Nunn, J. ;
Langford, N. K. ;
Jin, X. -M. ;
Champion, T. ;
Michelberger, P. ;
Reim, K. F. ;
England, D. ;
Jaksch, D. ;
Walmsley, I. A. .
SCIENCE, 2011, 334 (6060) :1253-1256
[6]  
Madelung E, 1926, Z PHYS, V40, P322
[7]   TEST OF THE LINEARITY OF QUANTUM-MECHANICS IN OPTICALLY PUMPED HG-201 [J].
MAJUMDER, PK ;
VENEMA, BJ ;
LAMOREAUX, SK ;
HECKEL, BR ;
FORTSON, EN .
PHYSICAL REVIEW LETTERS, 1990, 65 (24) :2931-2934
[8]  
Oriols X, 2012, APPLIED BOHMIAN MECHANICS: FROM NANOSCALE SYSTEMS TO COSMOLOGY, P1
[9]  
SAKURAI J., 1993, Modern Quantum Mechanics (Revised Edition)
[10]  
Sbitnev V. I., ARXIV13076920