Reconstruction of the ancestral marsupial karyotype from comparative gene maps

被引:27
作者
Deakin, Janine E. [1 ,2 ,3 ]
Delbridge, Margaret L. [1 ,2 ]
Koina, Edda [1 ,2 ]
Harley, Nerida [1 ,2 ]
Alsop, Amber E. [1 ,2 ]
Wang, Chenwei [1 ,4 ]
Patel, Vidushi S. [1 ,2 ]
Graves, Jennifer A. Marshall [1 ,2 ,5 ]
机构
[1] ARC Ctr Excellence Kangaroo Genom, Canberra, ACT, Australia
[2] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia
[3] Univ Canberra, Inst Appl Ecol, Canberra, ACT 2601, Australia
[4] Queensland Univ Technol, Australian Prostate Canc Res Ctr Queensland, Brisbane, Qld 4102, Australia
[5] La Trobe Univ, La Trobe Inst Mol Sci, Melbourne, Vic 3086, Australia
基金
澳大利亚研究理事会;
关键词
Comparative genomics; Comparative mapping; Physical map; Marsupial; Ancestral karyotype; TELOMERIC (TTAGGG)(N) SEQUENCES; GENOME SEQUENCE; TAMMAR WALLABY; EVOLUTION; (T(2)AG(3))(N); HYBRIDIZATION; MACROPODIDAE; CYTOGENETICS; CHROMOSOMES; DIDELPHIDAE;
D O I
10.1186/1471-2148-13-258
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The increasing number of assembled mammalian genomes makes it possible to compare genome organisation across mammalian lineages and reconstruct chromosomes of the ancestral marsupial and therian (marsupial and eutherian) mammals. However, the reconstruction of ancestral genomes requires genome assemblies to be anchored to chromosomes. The recently sequenced tammar wallaby (Macropus eugenii) genome was assembled into over 300,000 contigs. We previously devised an efficient strategy for mapping large evolutionarily conserved blocks in non-model mammals, and applied this to determine the arrangement of conserved blocks on all wallaby chromosomes, thereby permitting comparative maps to be constructed and resolve the long debated issue between a 2n = 14 and 2n = 22 ancestral marsupial karyotype. Results: We identified large blocks of genes conserved between human and opossum, and mapped genes corresponding to the ends of these blocks by fluorescence in situ hybridization (FISH). A total of 242 genes was assigned to wallaby chromosomes in the present study, bringing the total number of genes mapped to 554 and making it the most densely cytogenetically mapped marsupial genome. We used these gene assignments to construct comparative maps between wallaby and opossum, which uncovered many intrachromosomal rearrangements, particularly for genes found on wallaby chromosomes X and 3. Expanding comparisons to include chicken and human permitted the putative ancestral marsupial (2n = 14) and therian mammal (2n = 19) karyotypes to be reconstructed. Conclusions: Our physical mapping data for the tammar wallaby has uncovered the events shaping marsupial genomes and enabled us to predict the ancestral marsupial karyotype, supporting a 2n = 14 ancestor. Futhermore, our predicted therian ancestral karyotype has helped to understand the evolution of the ancestral eutherian genome.
引用
收藏
页数:15
相关论文
共 49 条
[1]   COMPOSITION AND CHROMOSOMAL LOCALIZATION OF CETACEAN HIGHLY REPETITIVE DNA WITH SPECIAL REFERENCE TO THE BLUE WHALE, BALAENOPTERA-MUSCULUS [J].
ARNASON, U ;
WIDEGREN, B .
CHROMOSOMA, 1989, 98 (05) :323-329
[2]   A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints [J].
Beck, Robin M. D. .
JOURNAL OF MAMMALOGY, 2008, 89 (01) :175-189
[3]   Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages [J].
Bulazel, Kira V. ;
Ferreri, Gianni C. ;
Eldridge, Mark D. B. ;
O'Neill, Rachel J. .
GENOME BIOLOGY, 2007, 8 (08)
[4]   (T2AG3)n telomeric sequence hybridization suggestive of centric fusion in karyotype marsupials evolution [J].
Carvalho, BD ;
Mattevi, MS .
GENETICA, 2000, 108 (03) :205-210
[5]   Ensembl 2002: accommodating comparative genomics [J].
Clamp, M ;
Andrews, D ;
Barker, D ;
Bevan, P ;
Cameron, G ;
Chen, Y ;
Clark, L ;
Cox, T ;
Cuff, J ;
Curwen, V ;
Down, T ;
Durbin, R ;
Eyras, E ;
Gilbert, J ;
Hammond, M ;
Hubbard, T ;
Kasprzyk, A ;
Keefe, D ;
Lehvaslaiho, H ;
Iyer, V ;
Melsopp, C ;
Mongin, E ;
Pettett, R ;
Potter, S ;
Rust, A ;
Schmidt, E ;
Searle, S ;
Slater, G ;
Smith, J ;
Spooner, W ;
Stabenau, A ;
Stalker, J ;
Stupka, E ;
Ureta-Vidal, A ;
Vastrik, I ;
Birney, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (01) :38-42
[6]   Comparative chromosome painting between marsupial orders: Relationships with a 2n=14 ancestral marsupial karyotype [J].
De Leo, AA ;
Guedelha, N ;
Toder, R ;
Voullaire, L ;
Ferguson-Smith, MA ;
O'Brien, PCM ;
Graves, JAM .
CHROMOSOME RESEARCH, 1999, 7 (07) :509-517
[7]   The Evolution of Marsupial and Monotreme Chromosomes [J].
Deakin, J. E. ;
Graves, J. A. M. ;
Rens, W. .
CYTOGENETIC AND GENOME RESEARCH, 2012, 137 (2-4) :113-129
[8]   Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour [J].
Deakin, Janine E. ;
Bender, Hannah S. ;
Pearse, Anne-Maree ;
Rens, Willem ;
O'Brien, Patricia C. M. ;
Ferguson-Smith, Malcolm A. ;
Cheng, Yuanyuan ;
Morris, Katrina ;
Taylor, Robyn ;
Stuart, Andrew ;
Belov, Katherine ;
Amemiya, Chris T. ;
Murchison, Elizabeth P. ;
Papenfuss, Anthony T. ;
Graves, Jennifer A. Marshall .
PLOS GENETICS, 2012, 8 (02)
[9]   Physical map of two tammar wallaby chromosomes: A strategy for mapping in non-model mammals [J].
Deakin, Janine E. ;
Koina, Edda ;
Waters, Paul D. ;
Doherty, Ruth ;
Patel, Vidushi S. ;
Delbridge, Margaret L. ;
Dobson, Bianca ;
Fong, James ;
Hu, Yanqiu ;
van den Hurk, Cecilia ;
Pask, Andrew J. ;
Shaw, Geoff ;
Smith, Carly ;
Thompson, Katherine ;
Wakefield, Matthew J. ;
Yu, Hongshi ;
Renfree, Marilyn B. ;
Graves, Jennifer A. Marshall .
CHROMOSOME RESEARCH, 2008, 16 (08) :1159-1175
[10]   AutoGRAPH:: an interactive web server for automating and visualizing comparative genome maps [J].
Derrien, Thomas ;
Andre, Catherine ;
Galibert, Francis ;
Hitte, Christophe .
BIOINFORMATICS, 2007, 23 (04) :498-499