Fisher informations and local asymptotic normality for continuous-time quantum Markov processes

被引:26
作者
Catana, Catalin [1 ]
Bouten, Luc
Guta, Madalin [1 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
quantum open systems; system identification; quantum Markov processes; quantum Fisher information; local asymptotic normality; continuous time measurements; IDENTIFICATION; INFERENCE;
D O I
10.1088/1751-8113/48/36/365301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of estimating an arbitrary dynamical parameter of an open quantum system in the input-output formalism. For irreducible Markov processes, we show that in the limit of large times the system-output state can be approximated by a quantum Gaussian state whose mean is proportional to the unknown parameter. This approximation holds locally in a neighbourhood of size t(-1/2) in the parameter space, and provides an explicit expression of the asymptotic quantum Fisher information in terms of the Markov generator. Furthermore we show that additive statistics of the counting and homodyne measurements also satisfy local asymptotic normality and we compute the corresponding classical Fisher informations. The general theory is illustrated with the examples of a two-level system and the atom maser. Our results contribute towards a better understanding of the statistical and probabilistic properties of the output process, with relevance for quantum control engineering, and the theory of non-equilibrium quantum open systems.
引用
收藏
页数:27
相关论文
共 45 条
[31]   IDENTIFICATION OF CONTINUOUS-TIME SISO SYSTEMS VIA MARKOV PARAMETER-ESTIMATION [J].
SUBRAHMANYAM, AVB ;
RAO, GP .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1993, 140 (01) :1-10
[32]   TIME SERIES REGRESSION ON INTEGRATED CONTINUOUS-TIME PROCESSES WITH HEAVY AND LIGHT TAILS [J].
Fasen, Vicky .
ECONOMETRIC THEORY, 2013, 29 (01) :28-67
[33]   An Imprecise Probabilistic Estimator for the Transition Rate Matrix of a Continuous-Time Markov Chain [J].
Krak, Thomas ;
Erreygers, Alexander ;
De Bock, Jasper .
UNCERTAINTY MODELLING IN DATA SCIENCE, 2019, 832 :124-132
[34]   Modeling continuous-time processes via input-to-state filters [J].
Mahata, Kaushik ;
Fu, Minyue .
AUTOMATICA, 2006, 42 (07) :1073-1084
[35]   Identification of continuous-time AR processes from unevenly sampled data [J].
Larsson, EK ;
Söderström, T .
AUTOMATICA, 2002, 38 (04) :709-718
[36]   The walker speaks its graph: global and nearly-local probing of the tunnelling amplitude in continuous-time quantum walks [J].
Seveso, Luigi ;
Benedetti, Claudia ;
Paris, Matteo G. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (10)
[37]   ctmcd: An R Package for Estimating the Parameters of a Continuous-Time Markov Chain from Discrete-Time Data [J].
Pfeuffer, Marius .
R JOURNAL, 2017, 9 (02) :127-141
[38]   Identification of continuous-time nonlinear systems via local Gaussian process models [J].
Hachino, Tomohiro ;
Matsushita, Kazuhiro ;
Takata, Hitoshi ;
Fukushima, Seiji ;
Igarashi, Yasutaka .
IEEJ Transactions on Electronics, Information and Systems, 2014, 134 (11) :1708-1715
[39]   Non-Asymptotic Kernel-Based Parametric Estimation of Continuous-Time Linear Systems [J].
Pin, Gilberto ;
Assalone, Andrea ;
Lovera, Marco ;
Parisini, Thomas .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (02) :360-373
[40]   Is Uniqueness Lost for Under-Sampled Continuous-Time Auto-Regressive Processes? [J].
Ward, John Paul ;
Kirshner, Hagai ;
Unser, Michael .
IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (04) :183-186