MULTISCALE DYNAMIC MODELING OF FLEXIBILITY IN MYOSIN V

被引:0
作者
Haghshenas-Jaryani, Mandi [1 ]
Bowling, Alan [1 ]
机构
[1] Univ Texas Arlington, Dept Mech & Aerosp Engn, Arlington, TX 76019 USA
来源
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 7A | 2014年
关键词
MOLECULAR-DYNAMICS; MULTIBODY DYNAMICS; MOTOR PROTEINS; KINESIN; BINDING; DOMAIN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a multiscale dynamic model for the simulation and analysis of flexibility in myosin V A three dimensional (3D) flexible multibody model is developed to mechanically model the biological structure of myosin V Experimental studies have shown that myosin's neck domain can be considered as three pairs of tandem elements which can bend at junctures between them. Therefore, each neck is modeled by three rigid bodies connected by flexible spherical joints. One of the most important issues in dynamic modeling of micro-nanoscale sized biological structures, likes DNA and motor proteins, is the long simulation run time due to the disproportionality between physical parameters involved in their dynamics such as mass, drag coefficient, and stiffness. In order to address this issue, the mostly used models, based on the famous overdamped Langevin dynamics, omit the inertial terms in the equations of motion; that leads to a first order model which is inconsistent with the Newton's second law. However, the proposed model uses the concept of the method of multiple scales (MMS) that brings all terms of the equations of motion into proportion with each other that helps to retain the inertia terms. This keeps consistency of the model with the physical laws and increases time step size of numerical integration from commonly used sub-femto seconds to sub-milli seconds. Therefore, simulation run time will be many orders of magnitude less than ones based on the other approaches. The simulation results obtained by the proposed multiscale model show more realistic dynamic behavior of myosin V in compared with other models.
引用
收藏
页数:9
相关论文
共 41 条
[1]   Biomolecular motors at the intersection of nanotechnology and polymer science [J].
Agarwal, Ashutosh ;
Hess, Henry .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (1-2) :252-277
[2]  
Anderson K., 2010, P JOINT INT C MULT S
[3]  
[Anonymous], 2000, PERTURBATION METHODS, DOI DOI 10.1002/9783527617609
[4]   Multiscale modeling of biomolecular systems: in serial and in parallel [J].
Ayton, Gary S. ;
Noid, Will G. ;
Voth, Gregory A. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (02) :192-198
[5]   Processive motor protein as an overdamped brownian stepper [J].
Bier, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (14)
[6]   Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping [J].
Block, Steven M. .
BIOPHYSICAL JOURNAL, 2007, 92 (09) :2986-2995
[7]  
Bowling A., 2010, P 1 INT C BION BIOM
[8]   The small mass assumption applied to the multibody dynamics of motor proteins [J].
Bowling, Alan ;
Palmer, Andre F. .
JOURNAL OF BIOMECHANICS, 2009, 42 (09) :1218-1223
[9]   Contact and Impact in the Multibody Dynamics of Motor Protein Locomotion [J].
Bowling, Alan P. ;
Palmer, Andre F. ;
Wilhelm, Lauren .
LANGMUIR, 2009, 25 (22) :12974-12981
[10]   Brownian Dynamics, Molecular Dynamics, and Monte Carlo modeling of colloidal systems [J].
Chen, JC ;
Kim, AS .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2004, 112 (1-3) :159-173