The Hilbert stack

被引:12
作者
Hall, Jack [1 ]
Rydh, David [2 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[2] KTH Royal Inst Technol, Dept Math, SE-10044 Stockholm, Sweden
关键词
Hilbert stack; Non-separated; Pushouts; Generalized Stein factorizations; MODULI SPACES; DEFORMATIONS;
D O I
10.1016/j.aim.2013.12.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi : X -> S be a morphism of algebraic stacks that is locally of finite presentation with affine stabilizers. We prove that there is an algebraic S-stack-the Hilbert stack-parameterizing proper algebraic stacks mapping quasi-finitely to X. This was previously unknown, even for a morphism of schemes. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:194 / 233
页数:40
相关论文
共 39 条
[1]   Complete moduli spaces of branchvarieties [J].
Alexeev, Valery ;
Knutson, Allen .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 639 :39-71
[2]  
[Anonymous], 2000, ERGEB MATH GRENZGEB
[3]  
[Anonymous], 1961, PUBL MATH I HAUTES E
[4]  
[Anonymous], 1961, PUBL MATH I HAUTES E
[5]   Hom stacks [J].
Aoki, M .
MANUSCRIPTA MATHEMATICA, 2006, 119 (01) :37-56
[6]  
Aoki M, 2006, MANUSCRIPTA MATH, V121, P135, DOI 10.1007/s00229-006-0029-3
[7]   VERSAL DEFORMATIONS AND ALGEBRAIC STACKS [J].
ARTIN, M .
INVENTIONES MATHEMATICAE, 1974, 27 (03) :165-189
[8]  
ARTIN M, 1973, LECT NOTES MATH, V305
[9]  
Artin Michael, 1969, Glob. Anal., P21
[10]  
Deligne P., 1969, PUBL MATH-PARIS, V36, P75, DOI 10.1007/BF02684599