On global solution of an initial boundary value problem for a class of damped nonlinear equations

被引:17
作者
Lin, Qun [1 ]
Wu, Yong Hong [1 ]
Lai, Shaoyong [2 ]
机构
[1] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
[2] S Western Univ Finance & Econ, Dept Econ Math, Chengdu 610074, Peoples R China
基金
澳大利亚研究理事会;
关键词
Initial boundary value problem; Potential wells; Global weak solution; Global strong solution;
D O I
10.1016/j.na.2007.10.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following problem u(tt) - alpha Delta u(t) + Delta(2)u - Delta u = f(u), x is an element of Omega, t > 0, u(x, 0) = u(0)(x), u(t)(x, 0) = u(1)(x), x is an element of Omega, Delta u(x, t)vertical bar(partial derivative Omega) = u(x, t)vertical bar(partial derivative Omega) = 0, t >= 0, where Omega subset of R '' is a bounded domain with smooth boundary. Under some assumptions of the initial data u(0)(x), u(1)(x) and nonlinear function f(u), the existence of global weak solutions and global strong solutions are obtained by means of the potential well method. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4340 / 4351
页数:12
相关论文
共 20 条
[1]   A WEAKLY NONLINEAR-ANALYSIS OF ELASTO-PLASTIC-MICROSTRUCTURE MODELS [J].
AN, LJ ;
PEIRCE, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (01) :136-155
[2]  
Chen GW, 2000, MATH METHOD APPL SCI, V23, P615, DOI 10.1002/(SICI)1099-1476(20000510)23:7<615::AID-MMA133>3.0.CO
[3]  
2-E
[4]   Dynamics around the ground state of a nonlinear evolution equation [J].
Esquivel-Avila, Jorge A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E331-E343
[5]   Some remarks on the wave equations with nonlinear damping and source terms [J].
Ikehata, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) :1165-1175
[6]   On exact travelling wave solutions for two types of nonlinear K (n, n) equations and a generalized KP equation [J].
Lai, Shaoyong ;
Wu, Y. H. ;
Wiwatanapataphee, B. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 212 (02) :291-299
[7]   The global solution of an initial boundary value problem for the damped Boussinesq equation [J].
Lai, SY ;
Wu, YH ;
Yang, X .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (02) :319-328
[8]  
Lai SY, 2003, DISCRETE CONT DYN-B, V3, P401
[9]  
Lions J.L., 1969, QUELQUES METHODS RES
[10]  
LIU Y, 1995, MATH APPL, V8