On Schrodinger-Poisson Systems

被引:253
作者
Ambrosetti, Antonio [1 ]
机构
[1] SISSA, I-34014 Trieste, Italy
关键词
Schrodinger-Poisson equation; Variational methods; Perturbation methods;
D O I
10.1007/s00032-008-0094-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss some recent results dealing with the existence of bound states of the nonlinear Schrodinger-Poisson system { -Delta u+V(x)u+lambda K(x)phi(x)u=vertical bar u vertical bar(p-1)u, -Delta phi=K(x)u(2), as well as of the corresponding semiclassical limits. The proofs are based upon Critical Point theory and Perturbation Methods.
引用
收藏
页码:257 / 274
页数:18
相关论文
共 19 条
[1]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
AMBROSETTI A., 2006, PROGR MATH, V240
[4]  
AMBROSETTI A, 2008, COMMUN CONTEMP MATH, P391
[5]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[6]   Local approximation for the Hartree-Fock exchange potential: A deformation approach [J].
Bokanowski, O ;
Mauser, NJ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (06) :941-961
[7]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[8]   Non-existence results for the coupled Klein-Gordon-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
ADVANCED NONLINEAR STUDIES, 2004, 4 (03) :307-322
[9]  
IANNI I, SOLUTIONS 2 IN PRESS
[10]  
Ianni I, 2008, ADV NONLINEAR STUD, V8, P573