Gene expression deconvolution in clinical samples

被引:36
|
作者
Zhao, Yingdong [1 ]
Simon, Richard [1 ]
机构
[1] NCI, Biometr Res Branch, Div Canc Treatment & Diag, NIH, Bethesda, MD 20892 USA
来源
GENOME MEDICINE | 2010年 / 2卷
关键词
MICROARRAY DATA; CELL-POPULATIONS; PATTERNS; BLOOD;
D O I
10.1186/gm214
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cell type heterogeneity may have a substantial effect on gene expression profiling of human tissue. Several in silico methods for deconvoluting a gene expression profile into cell-type-specific subprofiles have been published but not widely used. Here, we consider recent methods and the experimental validations available for them. Shen-Orr et al. recently developed an approach called cell-type-specific significance analysis of microarray for deconvoluting gene expression. This method requires the measurement of the proportion of each cell type in each sample and the expression profiles of the heterogeneous samples. It determines how gene expression varies among pre-defined phenotypes for each cell type. Gene expression can vary substantially among cell types and sample heterogeneity can mask the identification of biologically important phenotypic correlations. Consequently, the deconvolution approach can be useful in the analysis of mixtures of cell populations in clinical samples.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Gene expression deconvolution in clinical samples
    Yingdong Zhao
    Richard Simon
    Genome Medicine, 2
  • [2] The challenge of gene expression profiling in heterogeneous clinical samples
    Rodriguez-Gonzalez, F. German
    Mustafa, Dana A. M.
    Mostert, Bianca
    Sieuwerts, Anieta M.
    METHODS, 2013, 59 (01) : 47 - 58
  • [3] CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data
    Kang, Kai
    Meng, Qian
    Shats, Igor
    Umbach, David M.
    Li, Melissa
    Li, Yuanyuan
    Li, Xiaoling
    Li, Leping
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (12)
  • [4] Gene expression deconvolution in linear space
    Yi Zhong
    Zhandong Liu
    Nature Methods, 2012, 9 : 8 - 9
  • [5] Gene expression deconvolution in linear space
    Shai S Shen-Orr
    Robert Tibshirani
    Atul J Butte
    Nature Methods, 2012, 9 : 9 - 9
  • [6] Gene expression deconvolution in linear space
    Zhong, Yi
    Liu, Zhandong
    NATURE METHODS, 2012, 9 (01) : 8 - 9
  • [7] Statistical expression deconvolution from mixed tissue samples
    Clarke, Jennifer
    Seo, Pearl
    Clarke, Bertrand
    BIOINFORMATICS, 2010, 26 (08) : 1043 - 1049
  • [8] CellMix: a comprehensive toolbox for gene expression deconvolution
    Gaujoux, Renaud
    Seoighe, Cathal
    BIOINFORMATICS, 2013, 29 (17) : 2211 - 2212
  • [9] Gene expression deconvolution in linear space reply
    Shen-Orr, Shai S.
    Tibshirani, Robert
    Butte, Atul J.
    NATURE METHODS, 2012, 9 (01) : 9 - 9
  • [10] Deconvolution of heterogeneous wound tissue samples into relative macrophage phenotype composition via models based on gene expression
    Ferraro, Nicole M.
    Dampier, Will
    Weingarten, Michael S.
    Spiller, Kara L.
    INTEGRATIVE BIOLOGY, 2017, 9 (04) : 328 - 338