The balanced tensor product of module categories

被引:39
作者
Douglas, Christopher L. [1 ]
Schommer-Pries, Christopher [2 ]
Snyder, Noah [3 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[3] Indiana Univ, Dept Math, Bloomington, IN 47401 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
D O I
10.1215/21562261-2018-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The balanced tensor product M circle times(A) N of two modules over an algebra A is the vector space corepresenting A-balanced bilinear maps out of the product M x N.The balanced tensor product M boxed times(C) N of two module categories over a monoidal linear category C is the linear category corepresenting C-balanced right-exact bilinear functors out of the product category M x N. We show that the balanced tensor product can be realized as a category of bimodule objects in C, provided the monoidal linear category is finite and rigid.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 25 条
[1]  
BAKALOV BK B., 2001, University Lecture Series, V21
[2]  
Barr Michael, 1985, Fundamental Principles of Mathematical Sciences, V278, DOI [10.1007/978-1-4899-0021-0, DOI 10.1007/978-1-4899-0021-0]
[3]   The Picard crossed module of a braided tensor category [J].
Davydov, Alexei ;
Nikshych, Dmitri .
ALGEBRA & NUMBER THEORY, 2013, 7 (06) :1365-1403
[4]   On the structure of the Witt group of braided fusion categories [J].
Davydov, Alexei ;
Nikshych, Dmitri ;
Ostrik, Victor .
SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (01) :237-269
[5]  
Deligne P., 1990, Progr. Math., V87, P111, DOI DOI 10.1007/978-0-8176-4575-53
[6]   On fusion categories [J].
Etingof, P ;
Nikshych, D ;
Ostrik, V .
ANNALS OF MATHEMATICS, 2005, 162 (02) :581-642
[7]  
Etingof P, 2004, INT MATH RES NOTICES, V2004, P2915
[8]  
Etingof P.I., 2015, Math. Surveys Monographs, V205
[9]   FINITE TENSOR CATEGORIES [J].
Etingof, Pavel ;
Ostrik, Viktor .
MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (03) :627-654
[10]   Fusion categories and homotopy theory [J].
Etingof, Pavel ;
Nikshych, Dmitri ;
Ostrik, Victor .
QUANTUM TOPOLOGY, 2010, 1 (03) :209-273