THE DISRUPTIVE EVOLUTION OF 3D PRINTING

被引:13
|
作者
Panda, Biranchi [1 ]
Tan, Ming Jen [1 ]
Gibson, Ian [2 ]
Chua, Chee Kai [1 ]
机构
[1] Nanyang Technol Univ, Singapore Ctr Printing 3D, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Deakin Univ, Sch Engn, Fac Sci Engn & Built Environm, Geelong, Vic 3217, Australia
来源
PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016) | 2016年
关键词
Additive manufacturing; Prototyping; Building and construction; Automation;
D O I
10.3850/2424-8967_V02-146
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
3D printing, also known as additive manufacturing (AM) is one of the promising technologies that have served as a bridge between digital and physical domains without the need of tooling and human intervention. Its ability to turn digital models into physical objects allows designers to design, scan, share, and send digital representations of physical objects just as they can images or text online. With advancement of material science, this technology has greatly improved and now used for many more applications such as energy, healthcare, automotive and aerospace. Considering these recent applications and rapid growth, experts believe that the 3D printing technologies are highly disruptive and this disruption will continue through 2025. This paper reviews the disruptive potential of 3D printing processes and discusses a recent development, i.e. 3D concrete printing, which will hopefully bring success to building and construction industries in the near future.
引用
收藏
页码:152 / 157
页数:6
相关论文
共 50 条
  • [31] Ten challenges in 3D printing
    Oropallo, William
    Piegl, Les A.
    ENGINEERING WITH COMPUTERS, 2016, 32 (01) : 135 - 148
  • [32] 3D printing in pediatric surgery
    Tsai, Anthony Y.
    Greene, Alicia C.
    SEMINARS IN PEDIATRIC SURGERY, 2024, 33 (01)
  • [33] Designing Biomaterials for 3D Printing
    Guvendiren, Murat
    Molde, Joseph
    Soares, Rosane M. D.
    Kohn, Joachim
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2016, 2 (10): : 1679 - 1693
  • [34] 3D printing with cellulose materials
    Wang, Qianqian
    Sun, Jianzhong
    Yao, Qian
    Ji, Chencheng
    Liu, Jun
    Zhu, Qianqian
    CELLULOSE, 2018, 25 (08) : 4275 - 4301
  • [35] Complex light in 3D printing
    Moser, Christophe
    Delrot, Paul
    Loterie, Damien
    Delgado, Edgar Morales
    Modestino, Miguel
    Psaltis, Demetri
    COMPLEX LIGHT AND OPTICAL FORCES X, 2016, 9764
  • [36] 3D Printing for Bone Regeneration
    Bandyopadhyay, Amit
    Mitra, Indranath
    Bose, Susmita
    CURRENT OSTEOPOROSIS REPORTS, 2020, 18 (05) : 505 - 514
  • [37] Biocompatibility of Photopolymers in 3D Printing
    Alifui-Segbaya, Frank
    Varma, Sony
    Lieschke, Graham J.
    George, Roy
    3D PRINTING AND ADDITIVE MANUFACTURING, 2017, 4 (04) : 185 - 191
  • [38] Point-of-Care 3D Printing: A Feasibility Study of Using 3D Printing for Orthopaedic Trauma
    Teo, Alex Quok An
    Ng, David Qing Kai
    Lee, Peng
    O'Neill, Gavin Kane
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2021, 52 (11): : 3286 - 3292
  • [39] 3D Printing of Textiles: Potential Roadmap to Printing with Fibers
    Chatterjee, Kony
    Ghosh, Tushar K.
    ADVANCED MATERIALS, 2020, 32 (04)
  • [40] 3D printing of composites: design parameters and flexural performance
    Korkees, Feras
    Allenby, James
    Dorrington, Peter
    RAPID PROTOTYPING JOURNAL, 2020, 26 (04) : 699 - 706