Precipitated synthesis of Al2O3-ZnO nanorod for high-performance symmetrical supercapacitors

被引:52
作者
Di, Shan [1 ]
Gong, Lige [1 ,2 ]
Zhou, Baibin [1 ,2 ]
机构
[1] Harbin Normal Univ, Minist Educ, Key Lab Photon & Elect Bandgap Mat, Harbin 150025, Heilongjiang, Peoples R China
[2] Harbin Normal Univ, Coll Life Sci & Technol, Key Lab Mol & Cytogenet, Harbin 150025, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
ZnO; Al2O3; Solvent precipitation; Supercapacitor; MICROWAVE-ASSISTED SYNTHESIS; ENERGY DENSITY; OXIDE COMPOSITE; ZNO; GRAPHENE; ELECTRODE; NANOPARTICLES; BATTERY; NANOCOMPOSITES; ARCHITECTURES;
D O I
10.1016/j.matchemphys.2020.123289
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Composite materials based on zinc oxide have been made more and more attention because of their excellent capacitance performance and high efficiency ion/electron transmission ability. The Al2O3-ZnO metal oxide composite was used for high-performance supercapacitor materials by the solvent precipitation method. The electrochemical theoretical calculation shows that the surface capacitive (Q(c)) plays a leading role in total charge contribution. The Al2O3-ZnO nanorod displays a high specific capacity (C-s) (463.7 F g(-1)) and the favorable cyclic stability (96.9%), which is higher than the Al2O3 and the ZnO. The number of ion transferred (sigma) is 6.3 and the ion diffusion coefficient (D) is 7.6 x 10(-13) cm(2) s(-1). The symmetrical supercapacitor (SSC) was assembled with Al2O3-ZnO, and the energy density can reach 10.3 Wh kg(-1) with 1360.9 W kg(-1). This study demonstrates that Al2O3-ZnO nanorods can be used as electrodes for high performance supercapacitor devices, which provide a novel idea of the synthesis of electrode materials.
引用
收藏
页数:9
相关论文
共 48 条
[1]   ZnO/carbon nanotube nanocomposite for high energy density supercapacitors [J].
Aravinda, L. S. ;
Nagaraja, K. K. ;
Nagaraja, H. S. ;
Bhat, K. Udaya ;
Bhat, Badekai Ramachandra .
ELECTROCHIMICA ACTA, 2013, 95 :119-124
[2]   Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage [J].
Bae, Joonho ;
Song, Min Kyu ;
Park, Young Jun ;
Kim, Jong Min ;
Liu, Meilin ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (07) :1683-1687
[3]   In Situ Growth of a ZnO Nanowire Network within a TiO2 Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance [J].
Bai, Yang ;
Yu, Hua ;
Li, Zhen ;
Amal, Rose ;
Lu, Gao Qing ;
Wang, Lianzhou .
ADVANCED MATERIALS, 2012, 24 (43) :5850-5856
[4]   Li-O2 and Li-S batteries with high energy storage (vol 11, pg 19, 2012) [J].
Bruce, Peter G. ;
Freunberger, Stefan A. ;
Hardwick, Laurence J. ;
Tarascon, Jean-Marie .
NATURE MATERIALS, 2012, 11 (02)
[5]   Performance of Flexible and Binderless Polypyrrole/Graphene Oxide/Zinc Oxide Supercapacitor Electrode in a Symmetrical Two-Electrode Configuration [J].
Chee, W. K. ;
Lim, H. N. ;
Harrison, I. ;
Chong, K. F. ;
Zainal, Z. ;
Ng, C. H. ;
Huang, N. M. .
ELECTROCHIMICA ACTA, 2015, 157 :88-94
[6]   Recent trends in transition metal dichalcogenide based supercapacitor electrodes [J].
Cherusseri, Jayesh ;
Choudhary, Nitin ;
Kumar, Kowsik Sambath ;
Jung, Yeonwoong ;
Thomas, Jayan .
NANOSCALE HORIZONS, 2019, 4 (04) :840-858
[7]   TRANSITION FROM SUPERCAPACITOR TO BATTERY BEHAVIOR IN ELECTROCHEMICAL ENERGY-STORAGE [J].
CONWAY, BE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (06) :1539-1548
[8]   Study of nanocrystalline γ-Al2O3 produced by high-pressure compaction [J].
Costa, TMH ;
Gallas, MR ;
Benvenutti, EV ;
da Jornada, JAH .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (21) :4278-4284
[9]   Hybrid energy storage: the merging of battery and supercapacitor chemistries [J].
Dubal, D. P. ;
Ayyad, O. ;
Ruiz, V. ;
Gomez-Romero, P. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (07) :1777-1790
[10]   A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gelelectrolyte [J].
Dubal, Deepak P. ;
Suarez-Guevara, Jullieth ;
Tonti, Dino ;
Enciso, Eduardo ;
Gomez-Romero, Pedro .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23483-23492