Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid

被引:183
作者
Singh, Anu [1 ,2 ]
Sinsinbar, Gaurav [3 ]
Choudhary, Meenakshi [1 ]
Kumar, Veeresh [4 ]
Pasricha, Renu [4 ]
Verma, H. N. [2 ]
Singh, Surinder P. [4 ]
Arora, Kavita [1 ]
机构
[1] Jawaharlal Nehru Univ, Adv Instrumentat Res Facil, New Delhi 110067, India
[2] Jaipur Natl Univ, Sch Life Sci, Jaipur 302025, Rajasthan, India
[3] Delhi Technol Univ, Dept Biotechnol, Delhi 110042, India
[4] Natl Phys Lab, New Delhi 110012, India
关键词
Salmonella; Typhoid; DNA; Chitosan; Graphene oxide; Nano composite; GRAPHITE OXIDE; MODIFIED ELECTRODE; SALMONELLA-TYPHI; GLUCOSE-OXIDASE; THIN-FILMS; SENSORS; HYDROGENATION; DISPERSIONS; POLYANILINE; PATHOGEN;
D O I
10.1016/j.snb.2013.05.014
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Graphene oxide (GO)-Chitosan (CHI) nano-composite is employed for the development of DNA based electrochemical biosensor for diagnosis of typhoid. Biosensor has been prepared by covalent immobilization of Salmonella typhi specific 5'-amine labeled single stranded (ss) DNA probe on GO-CHI/ITO via glutaraldehyde. Differential pulse voltammetry (DPV) studies revealed good specificity and ability of ssDNA/GO-CHI/ITO biosensor to distinguish complementary, non-complementary and one base mismatch sequences. The ssDNA/GO-CHI/ITO biosensor showed detection range of 10 fM to 50 nM and LOD 10 fM within 60 s hybridization times for complementary sequence. Further, ssDNA/GO-CHI/ITO bioelectrode is able to detect complementary target present in serum samples with LOD of 100 fM at 25 degrees C. The excellent performance of biosensor is attributed to large surface-to-volume ratio and good electrochemical activity of graphene oxide, and good biocompatibility of chitosan, which enhances the DNA immobilization and facilitate electron transfer between DNA and electrode surface (ITO). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:675 / 684
页数:10
相关论文
共 55 条
[1]  
Abera B, 2010, ETHIOP J HEALTH DEV, V24, P46
[2]   Forming nanomaterials as layered functional structures toward materials nanoarchitectonics [J].
Ariga, Katsuhiko ;
Ji, Qingmin ;
Hill, Jonathan P. ;
Bando, Yoshio ;
Aono, Masakazu .
NPG ASIA MATERIALS, 2012, 4 :e17-e17
[3]  
Arora K., 2008, APPL PHYS 21 CENTURY, P473
[4]   Escherichia coli genosensor based on polyaniline [J].
Arora, Kavita ;
Prabhakar, Nirmal ;
Chand, Subhash ;
Malhotra, B. D. .
ANALYTICAL CHEMISTRY, 2007, 79 (16) :6152-6158
[5]   Recent developments in bio-molecular electronics techniques for food pathogens [J].
Arora, Kavita ;
Chand, Subhash ;
Malhotra, B. D. .
ANALYTICA CHIMICA ACTA, 2006, 568 (1-2) :259-274
[6]   Recent advances in ZnO nanostructures and thin films for biosensor applications: Review [J].
Arya, Sunil K. ;
Saha, Shibu ;
Ramirez-Vick, Jaime E. ;
Gupta, Vinay ;
Bhansali, Shekhar ;
Singh, Surinder P. .
ANALYTICA CHIMICA ACTA, 2012, 737 :1-21
[7]   Chitosan-Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery [J].
Bao, Hongqian ;
Pan, Yongzheng ;
Ping, Yuan ;
Sahoo, Nanda Gopal ;
Wu, Tongfei ;
Li, Lin ;
Li, Jun ;
Gan, Leong Huat .
SMALL, 2011, 7 (11) :1569-1578
[8]   Metal-Organic Framework Thin Films: From Fundamentals to Applications [J].
Betard, Angelique ;
Fischer, Roland A. .
CHEMICAL REVIEWS, 2012, 112 (02) :1055-1083
[9]  
Bond M., 2003, OXFORD SCI PUBLICATI, P64
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240