Darbouxian first integrals and invariants for real quadratic systems having an invariant conic

被引:14
作者
Cairó, L
Llibre, J
机构
[1] Univ Orleans, UMR 6628, MAPMO, Dept Math, F-45067 Orleans 2, France
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 03期
关键词
D O I
10.1088/0305-4470/35/3/309
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We apply the Darboux theory to study the integrability of real quadratic differential systems having an invariant conic. The fact that two intersecting straight lines or two parallel straight lines are particular cases of conics allows us to study simultaneously the integrability of quadratic systems having at least two invariant straight lines real or complex.
引用
收藏
页码:589 / 608
页数:20
相关论文
共 30 条
[1]   LIE SYMMETRIES AND INVARIANTS OF THE LOTKA-VOLTERRA SYSTEM [J].
ALMEIDA, MA ;
MAGALHAES, ME ;
MOREIRA, IC .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (04) :1854-1867
[2]  
[Anonymous], 1999, QUAL THEORY DIFF SYS
[3]   Darboux method and search of invariants for the Lotka-Volterra and complex quadratic systems [J].
Cairó, L ;
Feix, MR ;
Llibre, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (04) :2074-2091
[4]   FAMILIES OF INVARIANTS OF THE MOTION FOR THE LOTKA-VOLTERRA EQUATIONS - THE LINEAR POLYNOMIALS FAMILY [J].
CAIRO, L ;
FEIX, MR .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) :2440-2455
[5]  
Chandrasekhar S., 1939, INTRO STUDY STELLAR
[6]  
CHAVARRIGA J, 1997, EXPO MATH, V15, P161
[8]  
Christopher C., 2000, ANN DIFFERENTIAL EQU, V14, P5
[9]   INVARIANT ALGEBRAIC-CURVES AND CONDITIONS FOR A CENTER [J].
CHRISTOPHER, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1209-1229