Robust Variants of Dictionary Learning Exploiting M-Estimators

被引:1
作者
Loza, Carlos A. [1 ]
机构
[1] Univ San Francisco Quito, Dept Math, Quito, Ecuador
来源
2019 IEEE CHILEAN CONFERENCE ON ELECTRICAL, ELECTRONICS ENGINEERING, INFORMATION AND COMMUNICATION TECHNOLOGIES (CHILECON) | 2019年
关键词
Dictionary Learning; Image Denoising; K-SVD; M-Estimators; Robust Estimation; SIGNAL RECOVERY; SPARSE;
D O I
10.1109/chilecon47746.2019.8988048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a robust alternative the well known dictionary learning technique K-SVD. Specifically, we exploit the theory behind M-Estimators to incorporate robustness into the sparse coding stage of K-SVD, and hence, decrease the estimation bias that might be introduced when outliers are present. Five different M-Estimators are introduced alongside their optimal hyperparameters in order to avoid parameter tuning by the user. In this way, the proposed framework has the same number of free parameters as K-SVD with the added feature of robustness and improved performance in non Gaussian environments. We thoroughly demonstrate the superiority of the proposed algorithms via recovery of generating dictionaries for synthetic data and image denoising under two types of non homogenous noise-salt and pepper noise, and impulsive noise.
引用
收藏
页数:6
相关论文
共 19 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
Andersen R., 2008, MODERN METHODS ROBUS
[3]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[4]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[5]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1
[6]  
Huber P. J., 2011, Robust Statistics
[7]  
Loza CA, 2016, IEEE INT WORKS MACH
[8]   RobOMP: Robust variants of Orthogonal Matching Pursuit for sparse representations [J].
Loza, Carlos A. .
PEERJ COMPUTER SCIENCE, 2019, 2019 (05)
[9]   Sparse representation for color image restoration [J].
Mairal, Julien ;
Elad, Michael ;
Sapiro, Guillermo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2008, 17 (01) :53-69
[10]  
Mairal Julien, 2009, ICCV, V29