ON THE EXISTENCE AND STABILITY OF PERIODIC SOLUTIONS FOR PENDULUM-LIKE EQUATIONS WITH FRICTION AND φ-LAPLACIAN

被引:13
作者
Angel Cid, J. [1 ]
Torres, Pedro J. [2 ]
机构
[1] Univ Vigo, Higher Tech Sch Comp Engn, Dept Matemat, Orense 32004, Spain
[2] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada, Spain
关键词
Periodic solution; phi-Laplacian; pendulum equation; degree theory; stability; FORCED RELATIVISTIC PENDULUM; BOUNDARY-VALUE-PROBLEMS;
D O I
10.3934/dcds.2013.33.141
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence, multiplicity and stability of T-periodic solutions for the equation (phi(x'))' + cx' + g(x) = e(t) + s.
引用
收藏
页码:141 / 152
页数:12
相关论文
共 21 条
  • [1] Amann Herbert, 1990, An introduction to nonlinear analysis, V13, pxiv+458
  • [2] SOLVABILITY FOR SOME BOUNDARY VALUE PROBLEMS WITH φ-LAPLACIAN OPERATORS
    Angel Cid, J.
    Torres, Pedro J.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) : 727 - 732
  • [3] [Anonymous], 1990, DIFFERENTIAL INTEGRA
  • [4] Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian
    Bereanu, C.
    Mawhin, J.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 243 (02) : 536 - 557
  • [5] Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and φ-Laplacian
    Bereanu, Cristian
    Mawhin, Jean
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2): : 159 - 168
  • [6] EXISTENCE OF AT LEAST TWO PERIODIC SOLUTIONS OF THE FORCED RELATIVISTIC PENDULUM
    Bereanu, Cristian
    Torres, Pedro J.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2713 - 2719
  • [7] Bereanu C, 2010, J DYN DIFFER EQU, V22, P463, DOI 10.1007/s10884-010-9172-3
  • [8] Bereanu C, 2008, J FIX POINT THEORY A, V4, P57, DOI 10.1007/s11784-008-0072-7
  • [9] Brezis H, 2010, DIFFER INTEGRAL EQU, V23, P801
  • [10] Cepicka J, 1997, J MATH ANAL APPL, V209, P712, DOI 10.1006/jmaa.1997.5380