Methanol decomposition on electrospun zirconia nanofibers

被引:56
作者
Ruiz-Rosas, R. [1 ]
Bedia, J. [1 ]
Rosas, J. M. [1 ]
Lallave, M. [2 ]
Loscertales, I. G. [3 ]
Rodriguez-Mirasol, J. [1 ]
Cordero, T. [1 ]
机构
[1] Univ Malaga, Dept Chem Engn, Sch Ind Engn, E-29071 Malaga, Spain
[2] YFLOW Sistemas & Desarrollo SL, PTA, Malaga 29050, Spain
[3] Univ Malaga, Dept Mech Engn & Fluid Mech, Sch Ind Engn, E-29071 Malaga, Spain
关键词
Methanol decomposition; Zirconia; Electrospinning; Nanofibers; Heterogeneous catalysis; DIMETHYL ETHER DME; NANOCRYSTALLINE ZIRCONIA; TO-HYDROCARBONS; CRUDE METHANOL; ACID CATALYSTS; LIQUID JETS; MTO PROCESS; SOLID-ACID; DEHYDRATION; TRANSFORMATION;
D O I
10.1016/j.cattod.2011.10.031
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Electrospinning has been used for the preparation of PVP-zirconium acetate nanofibers. The obtained non-woven cloths have been calcined at different temperatures (200-1000 degrees C) and used as heterogeneous catalysts in the gas phase decomposition of methanol. The X-ray diffraction spectra of the zirconia nanofibers show the onset of a semicrystalline tetragonal structure for the fibers calcined at 400 degrees C. Transformation from tetragonal to monoclinic zirconia starts at a calcination temperature between 600 and 800 degrees C. SEM and TEM images of the zirconia nanofibers show fibers with a high aspect ratio and sizes as thin as 200 nm. The increase of the calcination temperature results in zirconia fiber catalysts with lower methanol steady state conversions, probably due to changes in the crystalline phase and crystal sintering. The fibers calcined at 500 degrees C yielded the highest methanol conversion and selectivities to dimethyl ether. In general trend, methanol dehydrates to dimethyl ether at the lower reaction temperatures and decomposes to hydrogen and carbon monoxide at the higher reaction temperatures. Deactivation of the catalyst is observed only at the highest reaction temperature, being probably related to deposition over the fiber surface of pyrolytic carbon from cracking reaction of dimethyl ether. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 56 条
[1]   Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique [J].
Agrell, J ;
Hasselbo, K ;
Jansson, K ;
Järås, SG ;
Boutonnet, M .
APPLIED CATALYSIS A-GENERAL, 2001, 211 (02) :239-250
[2]   Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins [J].
Aguayo, AT ;
Gayubo, AG ;
Vivanco, R ;
Olazar, M ;
Bilbao, J .
APPLIED CATALYSIS A-GENERAL, 2005, 283 (1-2) :197-207
[3]  
[Anonymous], METHANE CONVERSION
[4]   The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review [J].
Arcoumanis, Constantine ;
Bae, Choongsik ;
Crookes, Roy ;
Kinoshita, Eiji .
FUEL, 2008, 87 (07) :1014-1030
[5]   Kinetic Study of the Decomposition of 2-Butanol on Carbon-Based Acid Catalyst [J].
Bedia, J. ;
Ruiz-Rosas, R. ;
Rodriguez-Mirasol, J. ;
Cordero, T. .
AICHE JOURNAL, 2010, 56 (06) :1557-1568
[6]   A kinetic study of 2-propanol dehydration on carbon acid catalysts [J].
Bedia, J. ;
Ruiz-Rosas, R. ;
Rodriguez-Mirasol, J. ;
Cordero, T. .
JOURNAL OF CATALYSIS, 2010, 271 (01) :33-42
[7]  
Brown D.M., 1991, Catal. Today, V8, P279, DOI 10.1016/0920-5861(91)80055-e
[8]  
Cai G., 1999, APPL CATAL A-GEN, V125, P29
[9]   Synthesis and room-temperature ultraviolet photoluminesence properties of zirconia nanowires [J].
Cao, HQ ;
Qiu, XQ ;
Luo, B ;
Liang, Y ;
Zhang, YH ;
Tan, RQ ;
Zhao, MJ ;
Zhu, QM .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (03) :243-246
[10]   Bimetallic Pt-Metal catalysts for the decomposition of methanol: Effect of secondary metal on the oxidation state, activity, and selectivity of Pt [J].
Croy, Jason R. ;
Mostafa, S. ;
Hickman, L. ;
Heinrich, H. ;
Roldan Cuenya, B. .
APPLIED CATALYSIS A-GENERAL, 2008, 350 (02) :207-216