The role of bacterial communities and carbon dioxide on the corrosion of steel

被引:31
作者
Usher, K. M. [1 ,2 ]
Kaksonen, A. H. [1 ,3 ]
Bouquet, D. [4 ]
Cheng, K. Y. [1 ]
Geste, Y. [1 ]
Chapman, P. G. [5 ]
Johnston, C. D. [1 ,6 ]
机构
[1] Commonwealth Sci & Ind Res Org CSIRO Land & Water, Wembley, WA 6913, Australia
[2] Univ Western Australia, Sch Plant Biol, Crawley, WA, Australia
[3] Univ Western Australia, Sch Pathol & Lab Med, Crawley, WA, Australia
[4] Univ Lorraine, ENSAIA, Nancy, France
[5] Curtin Univ Technol, Dept Chem, Bentley, WA 6102, Australia
[6] Univ Western Australia, Sch Earth & Environm, Crawley, WA, Australia
关键词
Steel; Iron; Microbial corrosion; Sulphate reducing bacteria; Acetogen; MICROBIOLOGICALLY INFLUENCED CORROSION; ELECTRON-TRANSFER; SP NOV; IRON REDUCTION; SULFATE; DESULFOVIBRIO; NANOWIRES; GROWTH; ACETOBACTERIUM; TRANSFORMATION;
D O I
10.1016/j.corsci.2015.05.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Natural microbial communities were grown anaerobically with steel as the electron source and CO2 the electron acceptor and carbon source, without organic carbon and typical electron acceptors. The cultures increased corrosion by up to 45.5% compared to sterile controls in two months. Pyrosequencing showed the presence of sulphate reducing bacteria (SRB), sulphur reducing bacteria ((SRB)-R-0) and acetogens likely growing in a syntrophic relationship where SRB extracted electrons from iron, acetogens accepted electrons and reduced CO2 to acetate, which served as carbon source for SRB and/or (SRB)-R-0. The SRB Desulfovibrio mexicanus comprised up to 90.1% of the community. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:354 / 365
页数:12
相关论文
共 50 条
[41]   Unveiling the effect of magnetite on the synergistic action of deposits and microorganisms on carbon steel corrosion [J].
Diaz-Mateus, Maria A. ;
Machuca, Laura L. ;
Farhat, Hanan ;
Salgar-Chaparro, Silvia J. .
CORROSION SCIENCE, 2024, 231
[42]   Corrosion of carbon steel under sequential aerobic-anaerobic environmental conditions [J].
El Hajj, H. ;
Abdelouas, A. ;
El Mendili, Y. ;
Karakurt, G. ;
Grambow, B. ;
Martin, C. .
CORROSION SCIENCE, 2013, 76 :432-440
[43]   Corrosion and cathodic protection of carbon steel in the tidal zone: Products, mechanisms and kinetics [J].
Refait, Ph. ;
Jeannin, M. ;
Sabot, R. ;
Antony, H. ;
Pineau, S. .
CORROSION SCIENCE, 2015, 90 :375-382
[44]   Carbon steel corrosion by bacteria from failed seal rings at an offshore facility [J].
Salgar-Chaparro, Silvia J. ;
Darwin, Adam ;
Kaksonen, Anna H. ;
Machuca, Laura L. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[45]   The carbon footprint of steel corrosion [J].
Iannuzzi, M. ;
Frankel, G. S. .
NPJ MATERIALS DEGRADATION, 2022, 6 (01)
[46]   Characterization of the surface film fonned from carbon dioxide corrosion on N80 steel [J].
Wu, SL ;
Cui, ZD ;
He, F ;
Bai, ZQ ;
Zhu, SL ;
Yang, XJ .
MATERIALS LETTERS, 2004, 58 (06) :1076-1081
[47]   A study of 4-carboxyphenylboronic acid as a corrosion inhibitor for steel in carbon dioxide containing environments [J].
Nam, N. D. ;
Bui, Q. V. ;
Mathesh, M. ;
Tan, M. Y. J. ;
Forsyth, M. .
CORROSION SCIENCE, 2013, 76 :257-266
[48]   Investigation of Inhibition Properties of Sophorolipids for X65 Steel Corrosion in Simulated Oilfield Produced Water Saturated with Carbon Dioxide [J].
Zhang, Jing ;
Wang, Jie ;
Zhu, Fengmin ;
Du, Min .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (19) :5197-5203
[49]   Corrosion Improvement of Carbon Steel in Concrete Environment through Modification of Steel Microstructure [J].
Torbati-Sarraf, H. ;
Poursaee, A. .
JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (05)
[50]   Understanding of low-carbon steel marine corrosion through simulation in artificial seawater [J].
Pusparizkita, Yustina M. ;
Fardilah, Vivi A. ;
Aslan, Christian ;
Jamari, J. ;
Bayuseno, Athanasius P. .
AIMS MATERIALS SCIENCE, 2023, 10 (03) :499-516