Exploring Segment-Level Semantics for Online Phase Recognition From Surgical Videos

被引:29
作者
Ding, Xinpeng [1 ]
Li, Xiaomeng [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
关键词
Surgery; Videos; Feature extraction; Semantics; Hidden Markov models; Task analysis; Convolution; Surgical video analysis; surgical phase recognition; REAL-TIME SEGMENTATION; WORKFLOW RECOGNITION; TASKS;
D O I
10.1109/TMI.2022.3182995
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automatic surgical phase recognition plays a vital role in robot-assisted surgeries. Existing methods ignored a pivotal problem that surgical phases should be classified by learning segment-level semantics instead of solely relying on frame-wise information. This paper presents a segment-attentive hierarchical consistency network (SAHC) for surgical phase recognition from videos. The key idea is to extract hierarchical high-level semantic-consistent segments and use them to refine the erroneous predictions caused by ambiguous frames. To achieve it, we design a temporal hierarchical network to generate hierarchical high-level segments. Then, we introduce a hierarchical segment-frame attention module to capture relations between the low-level frames and high-level segments. By regularizing the predictions of frames and their corresponding segments via a consistency loss, the network can generate semantic-consistent segments and then rectify the misclassified predictions caused by ambiguous low-level frames. We validate SAHC on two public surgical video datasets, i.e., the M2CAI16 challenge dataset and the Cholec80 dataset. Experimental results show that our method outperforms previous state-of-the-arts and ablation studies prove the effectiveness of our proposed modules. Our code has been released at: https://github.com/xmed-lab/SAHC.
引用
收藏
页码:3309 / 3319
页数:11
相关论文
共 57 条
[21]   Temporal Convolutional Networks for Action Segmentation and Detection [J].
Lea, Colin ;
Flynn, Michael D. ;
Vidal, Rene ;
Reiter, Austin ;
Hager, Gregory D. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1003-1012
[22]   An Improved Model for Segmentation and Recognition of Fine-grained Activities with Application to Surgical Training Tasks [J].
Lea, Colin ;
Hager, Gregory D. ;
Vidal, Rene .
2015 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2015, :1123-1129
[23]   Multi-Hierarchical Category Supervision for Weakly-Supervised Temporal Action Localization [J].
Li, Guozhang ;
Li, Jie ;
Wang, Nannan ;
Ding, Xinpeng ;
Li, Zhifeng ;
Gao, Xinbo .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :9332-9344
[24]   MS-TCN plus plus : Multi-Stage Temporal Convolutional Network for Action Segmentation [J].
Li, Shijie ;
Abu Farha, Yazan ;
Liu, Yun ;
Cheng, Ming-Ming ;
Gall, Juergen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (06) :6647-6658
[25]  
Li Y., 2022, PROC AAAI, P4556
[26]   SwinIR: Image Restoration Using Swin Transformer [J].
Liang, Jingyun ;
Cao, Jiezhang ;
Sun, Guolei ;
Zhang, Kai ;
Van Gool, Luc ;
Timofte, Radu .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :1833-1844
[27]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[28]  
Liu Z, 2021, Arxiv, DOI [arXiv:2103.14030, DOI 10.48550/ARXIV.2103.14030]
[29]  
Maddox WJ, 2019, ADV NEUR IN, V32
[30]   Surgical data science for next-generation interventions [J].
Maier-Hein, Lena ;
Vedula, Swaroop S. ;
Speidel, Stefanie ;
Navab, Nassir ;
Kikinis, Ron ;
Park, Adrian ;
Eisenmann, Matthias ;
Feussner, Hubertus ;
Forestier, Germain ;
Giannarou, Stamatia ;
Hashizume, Makoto ;
Katic, Darko ;
Kenngott, Hannes ;
Kranzfelder, Michael ;
Malpani, Anand ;
Maerz, Keno ;
Neumuth, Thomas ;
Padoy, Nicolas ;
Pugh, Carla ;
Schoch, Nicolai ;
Stoyanov, Danail ;
Taylor, Russell ;
Wagner, Martin ;
Hager, Gregory D. ;
Jannin, Pierre .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (09) :691-696