Autophagy-Lysosome Pathway in Renal Tubular Epithelial Cells Is Disrupted by Advanced Glycation End Products in Diabetic Nephropathy

被引:105
|
作者
Liu, Wei Jing [1 ]
Shen, Ting Ting [1 ]
Chen, Rui Hong [1 ]
Wu, Hong-Luan [1 ]
Wang, Yan Jin [1 ]
Deng, Jian Kun [1 ]
Chen, Qiu Hua [1 ]
Pan, Qingjun [1 ]
Fu, Chang-mei Huang [1 ]
Tao, Jing-li [1 ]
Liang, Dong [1 ]
Liu, Hua-feng [1 ]
机构
[1] Guangdong Med Coll, Inst Nephrol, Zhanjiang 524001, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
PROTEIN-DEGRADATION; HIGH GLUCOSE; APOPTOSIS; ALBUMIN; INJURY; RAGE;
D O I
10.1074/jbc.M115.666354
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It has been suggested that autophagy protects renal tubular epithelial cells (TECs) from injury in diabetic nephropathy (DN). However, the manner in which the autophagy-lysosome pathway is changed in this state remains unclear. In this study of DN, we investigated the autophagic activity and lysosomal alterations in vivo and in vitro. We found that autophagic vacuoles and SQSTM1-positive proteins accumulated in TECs from patients with DN and in human renal tubular epithelial cell line (HK-2 cells) treated with advanced glycation end products (AGEs), the important factors that involved in the pathogenesis of DN. In HK-2 cells, exposure to AGEs caused a significant increase in autophagosomes but a marked decrease in autolysosomes, and the lysosomal turnover of LC3-II was not observed, although LC3-II puncta were co-localized with the irregular lysosomal-associated membrane protein1 granules after AGEs treatment. Furthermore, lysosomal membrane permeabilization was triggered by AGEs, which likely resulted in a decrease in the enzymatic activities of cathepsin B and cathepsin L, the defective acidification of lysosomes, and suppression of the lysosomal degradation of DQ-ovalbumin. Oxidative stress evoked by AGEs-receptor for AGE interaction likely played an important role in the lysosomal dysfunction. Additionally, ubiquitinated proteins were co-localized with SQSTM1-positive puncta and accumulated in HK-2 cells after exposure to AGEs, indicating blocked degradation of SQSTM1-positive and ubiquitinated aggregates. Taken together, the results show that lysosomal membrane permeabilization and lysosomal dysfunction are triggered by AGEs, which induce autophagic inactivation in TECs from patients with DN. Disruption of the autophagy-lysosome pathway should be focused when studying the mechanisms underlying DN.
引用
收藏
页码:20499 / 20510
页数:12
相关论文
共 50 条
  • [1] Diabetic nephropathy and advanced glycation end products
    Menè, P
    Festuccia, F
    Polci, R
    Pugliese, F
    Cinotti, GA
    ADVANCED GLYCATION END PRODUCTS IN NEPHROLOGY, 2001, 131 : 22 - 32
  • [2] Advanced glycation end products and the pathogenesis of diabetic nephropathy
    Yamagishi, S
    Masayoshi, T
    Makita, Z
    TYPE-2 DIABETIC NEPHROPATHY IN JAPAN: FROM BENCH TO BEDSIDE, 2001, 134 : 30 - 35
  • [3] Advanced glycation end-products in diabetic nephropathy
    Sugiyama, S
    Miyata, T
    Horie, K
    Iida, Y
    Tsuyuki, M
    Tanaka, H
    Maeda, K
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 1996, 11 : 91 - 94
  • [4] Role of advanced glycation end products in diabetic nephropathy
    Forbes, JM
    Cooper, ME
    Oldfield, MD
    Thomas, MC
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 : S254 - S258
  • [5] Advanced glycation end-products in diabetic nephropathy
    Friedman, EA
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 1999, 14 : 1 - 9
  • [6] Isoliquiritigenin ameliorates advanced glycation end-products toxicity on renal proximal tubular epithelial cells
    Lin, Chin-Yi
    Lin, Yu-Cheng
    Paul, Catherine Reena
    Hsieh, Dennis Jine-Yuan
    Day, Cecilia Hsuan
    Chen, Ray-Jade
    Kuo, Chia-Hua
    Ho, Tsung-Jung
    Shibu, Marthandam Asokan
    Lai, Chin-Hu
    Shih, Tzu-Ching
    Kuo, Wei-Wen
    Huang, Chih-Yang
    ENVIRONMENTAL TOXICOLOGY, 2022, 37 (08) : 2096 - 2102
  • [7] Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells
    Huang, Jau-Shyang
    Chuang, Lea-Yea
    Guh, Jinn-Yuh
    Yang, Yu-Lin
    Hsu, Min-Shyang
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (02) : 220 - 226
  • [8] Advanced glycation end products, oxidative stress and diabetic nephropathy
    Yamagishi, Sho-ichi
    Matsui, Takanori
    OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2010, 3 (02) : 101 - 108
  • [9] THE ROLE OF ADVANCED GLYCATION END PRODUCTS IN PATOGENESIS OF DIABETIC NEPHROPATHY
    Gavrilova, Alina O.
    Severina, Anastasia S.
    Shamhalova, Minara S.
    Shestakova, Marina, V
    DIABETES MELLITUS, 2021, 24 (05): : 461 - 469
  • [10] Acteoside delays the fibrosis process of diabetic nephropathy by anti-oxidation and regulating the autophagy-lysosome pathway
    Zhou, Mengqi
    Zhang, Shujiao
    Bai, Xuehui
    Cai, Yuzi
    Zhang, Zeyu
    Zhang, Pingna
    Xue, Chengyuan
    Zheng, Huijuan
    Sun, Quanmei
    Han, Dong
    Lou, Lixia
    Wang, Yaoxian
    Liu, Weijing
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2024, 978