Analysis of a 28-nm CMOS Fast-Lock Bang-Bang Digital PLL With 220-fs RMS Jitter for Millimeter-Wave Communication

被引:38
作者
Tsai, Cheng-Hsueh [1 ,2 ]
Zong, Zhiwei [1 ]
Pepe, Federico [1 ]
Mangraviti, Giovanni [1 ]
Craninckx, Jan [1 ]
Wambacq, Piet [1 ]
机构
[1] IMEC, B-3001 Leuven, Belgium
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
关键词
256 quadrature amplitude modulation (QAM); 60; GHz; CMOS; fast-lock phase-locked loop (PLL); IEEE-802; 11ad; millimeter-wave (mm-wave); TF-VCO; LOW-PHASE-NOISE; GHZ; VCO;
D O I
10.1109/JSSC.2020.2993717
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article analyses and demonstrates a 22.5-27.7-GHz fast-lock low-phase-noise bang-bang digital phase-locked loop (PLL) for millimeter-wave (mm-wave) communication. A discrete-time PLL model, together with theoretical transfer functions, gives insight on the functionality of the automatic bandwidth control, on the effect of the gear-shift algorithm for fast lock and on the different noise contributions. The proposed gear-shift algorithm scales up the PLL bandwidth for faster acquisition and orderly reduces it for jitter performance. The PLL contains a digitally controlled oscillator (DCO) based on transformer feedback with a tunable source-bridged capacitor, which allows for a low phase noise (PN) over a wide tuning range (FoM of -184 dBc/Hz and FoM(T) of -191 dBc/Hz) and for a fine frequency resolution. The PLL occupies 0.09-mm(2) core area and exhibits 220 fs rms jitter while consuming 25 mW, giving FoM(RMS) of -239 dB. Its frequency acquisition time improves from 780 to 45 mu s with the gear-shift algorithm. For 60-GHz communication, with a frequency multiplication factor of 2.5, this PLL covers all six channels' frequencies of IEEE-802.11ad, allows a transmitter (TX) error vector magnitude (EVM) down to -35.9 dB assuming a TX signal to the noise-plus-distortion ratio (SNDR) of 40 dB, and, thus, is capable of supporting 256 quadrature amplitude modulation (QAM).
引用
收藏
页码:1854 / 1863
页数:10
相关论文
共 26 条
[1]  
[Anonymous], 2018, 2018 IEEE SOI3D SUBT, DOI DOI 10.1109/S3S.2018.8640187
[2]  
Bertulessi L, 2018, ISSCC DIG TECH PAP I, P252, DOI 10.1109/ISSCC.2018.8310279
[3]   A 16TX/16RX 60 GHz 802.11ad Chipset With Single Coaxial Interface and Polarization Diversity [J].
Boers, Michael ;
Afshar, Bagher ;
Vassiliou, Iason ;
Sarkar, Saikat ;
Nicolson, Sean T. ;
Adabi, Ehsan ;
Perumana, Bevin George ;
Chalvatzis, Theodoros ;
Kavvadias, Spyros ;
Sen, Padmanava ;
Chan, Wei Liat ;
Yu, Alvin Hsing-Ting ;
Parsa, Ali ;
Nariman, Med ;
Yoon, Seunghwan ;
Besoli, Alfred Grau ;
Kyriazidou, Chryssoula A. ;
Zochios, Gerasimos ;
Castaneda, Jesus A. ;
Sowlati, Tirdad ;
Rofougaran, Maryam ;
Rofougaran, Ahmadreza .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (12) :3031-3045
[4]   A 1.94 to 2.55 GHz, 3.6 to 4.77 GHz Tunable CMOS VCO Based on Double-Tuned, Double-Driven Coupled Resonators [J].
Catli, Burak ;
Hella, Mona Mostafa .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (09) :2463-2477
[5]  
Cherniak D, 2018, ISSCC DIG TECH PAP I, P248, DOI 10.1109/ISSCC.2018.8310277
[6]  
El-Gouhary A, 2011, IEEE INT SYMP CIRC S, P1888, DOI 10.1109/ISCAS.2011.5937956
[7]   Capacitive Degeneration in LC-Tank Oscillator for DCO Fine-Frequency Tuning [J].
Fanori, Luca ;
Liscidini, Antonio ;
Castello, Rinaldo .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (12) :2737-2745
[8]  
Grimaldi L, 2019, ISSCC DIG TECH PAP I, V62, P268, DOI 10.1109/ISSCC.2019.8662411
[9]   A Low-Voltage Low-Phase-Noise 25-GHz Two-Tank Transformer-Feedback VCO [J].
Guo, Shita ;
Gui, Ping ;
Liu, Tianwei ;
Zhang, Tao ;
Xi, Tianzuo ;
Wu, Guoying ;
Fan, Yanli ;
Morgan, Mark .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (10) :3162-3173
[10]   A general theory of phase noise in electrical oscillators [J].
Hajimiri, A ;
Lee, TH .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (02) :179-194