Anisotropic tensor renormalization group

被引:52
作者
Adachi, Daiki [1 ]
Okubo, Tsuyoshi [1 ,2 ]
Todo, Synge [1 ,3 ]
机构
[1] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[2] JST, PRESTO, Tokyo 1130033, Japan
[3] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
基金
日本学术振兴会;
关键词
Statistical mechanics - Crystal lattices - Ising model - Cost reduction - Anisotropy - Singular value decomposition;
D O I
10.1103/PhysRevB.102.054432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a different tensor renormalization group algorithm, anisotropic tensor renormalization group (ATRG), for lattice models in arbitrary dimensions. The proposed method shares the same versatility with the higher-order tensor renormalization group (HOTRG) algorithm, i.e., it preserves the lattice topology after the renormalization. In comparison with HOTRG, both the computation cost and the memory footprint of our method are drastically reduced, especially in higher dimensions, by renormalizing tensors in an anisotropic way after the singular value decomposition. We demonstrate the ability of ATRG for the square lattice and the simple cubic lattice Ising models. Although the accuracy of the present method degrades when compared with HOTRG of the same bond dimension, the accuracy with fixed computation time is improved greatly due to the drastic reduction of the computation cost.
引用
收藏
页数:7
相关论文
共 39 条
[1]   Phase transition of four-dimensional Ising model with higher-order tensor renormalization group [J].
Akiyama, Shinichiro ;
Kuramashi, Yoshinobu ;
Yamashita, Takumi ;
Yoshimura, Yusuke .
PHYSICAL REVIEW D, 2019, 100 (05)
[3]   Renormalization Group Flows of Hamiltonians Using Tensor Networks [J].
Bal, M. ;
Marien, M. ;
Haegeman, J. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2017, 118 (25)
[4]   Partial Order and Finite-Temperature Phase Transitions in Potts Models on Irregular Lattices [J].
Chen, Q. N. ;
Qin, M. P. ;
Chen, J. ;
Wei, Z. C. ;
Zhao, H. H. ;
Normand, B. ;
Xiang, T. .
PHYSICAL REVIEW LETTERS, 2011, 107 (16)
[5]   Competing States in the t-J Model: Uniform d-Wave State versus Stripe State [J].
Corboz, Philippe ;
Rice, T. M. ;
Troyer, Matthias .
PHYSICAL REVIEW LETTERS, 2014, 113 (04)
[6]   Simultaneous analysis of several models in the three-dimensional Ising universality class -: art. no. 036125 [J].
Deng, YJ ;
Blöte, HWJ .
PHYSICAL REVIEW E, 2003, 68 (03) :9
[7]   Towards computational insights into the large-scale structure of spin foams [J].
Dittrich, Bianca ;
Eckert, Frank C. .
LOOPS 11: NON-PERTURBATIVE / BACKGROUND INDEPENDENT QUANTUM GRAVITY, 2012, 360
[8]   Algorithms for tensor network renormalization [J].
Evenbly, G. .
PHYSICAL REVIEW B, 2017, 95 (04)
[9]   Local Scale Transformations on the Lattice with Tensor Network Renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2016, 116 (04)
[10]   Tensor Network Renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)