Mutational analysis of CFTR in the Ecuadorian population using next-generation sequencing

被引:8
作者
Carlos Ruiz-Cabezas, Juan [1 ,2 ,3 ]
Barros, Francisco [4 ]
Sobrino, Beatriz [4 ]
Garcia, Gustavo [1 ,3 ,5 ]
Burgos, Ramiro [3 ]
Farhat, Carlos [1 ]
Castro, Antonella [1 ]
Munoz, Lenin [1 ]
Karina Zambrano, Ana [6 ]
Martinez, Mariela [7 ]
Montalvan, Martha [1 ,8 ,9 ]
Paz-y-Mino, Cesar [6 ]
机构
[1] UEES, Guayaquil, Ecuador
[2] Univ Catolica Santiago Guayaquil, Inst Invest Integral Salud ISAIN UCSG, Guayaquil, Ecuador
[3] Inst Oncologico Nacl Soc Lucha Canc ION SOLCA, Guayaquil, Ecuador
[4] Fdn Publ Galega Med Xenom SERGAS, CIBERER, Grp Med Xenorn USC, Santiago De Compostela, Spain
[5] Univ Catolica Santiago Guayaquil, Escuela Odontol, Guayaquil, Ecuador
[6] Univ UTE, Fac Ciencias Salud, Ctr Invest Genet & Genom, Quito, Ecuador
[7] Fdn Fibrosis Quist, Guayaquil, Ecuador
[8] Univ Guayaquil, Fac Ciencias Med, Guayaquil, Ecuador
[9] Univ Catolica Santiago Guayaquil, Fac Ciencias Med, Guayaquil, Ecuador
关键词
CFTR variants; CF in Ecuador; NGS; Microarrays; CYSTIC-FIBROSIS PATIENTS; GENE; SPECTRUM; FRAMEWORK; PHENOTYPE; ADMIXTURE; VARIANTS;
D O I
10.1016/j.gene.2019.02.015
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The frequency distributions of cystic fibrosis variants are heterogeneous in Ecuador because of the genetic admixture of its population. The aim of this study was to identify disease-causing variants among Ecuadorian cystic fibrosis (CF) patients by next-generation sequencing (NGS) of the entire cystic fibrosis transmembrane conductance regulator (MR) gene. The results showed an approximation of the frequencies of pathogenic variants in the population under study and an optimal mutation panel for routine first-line CF molecular diagnosis. One hundred and forty-one patients with suspected CF from the 3 largest Ecuadorian cities (Guayaquil, Quito, and Cuenca) were studied. One hundred and seventy mutated alleles were detected in eighty-five individuals. Twenty-eight disease-causing variants were identified, with p.Phe508del and p.His609Arg being the most frequent (both 24.7%) followed by p.Gly85Glu (11.1%), p.Leul5Pro (9.4%), p.Asn1303Lys (4.1%), and p.G1y542* (2.3%). Together, these variants constituted 76.44% of the detected disease-causing variants. The following six novel potentially disease-associated variants were detected: 3 deletions (CFTR_dele10, CFTR_dele12, and c.2672delA), 1 nonsense variant (p.Cys491*), 1 missense variant (p.Trp496Arg), and 1 complex allele (p. [Gly253Arg;Gly451Val]). The remaining mutations occurred in isolation and were present in the databases.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
[31]   Next-generation sequencing in dermatology [J].
King, Andrew D. ;
Deirawan, Hany ;
Klein, Paytra A. ;
Dasgeb, Bahar ;
Dumur, Catherine I. ;
Mehregan, Darius R. .
FRONTIERS IN MEDICINE, 2023, 10
[32]   Role of Next-Generation Sequencing in Diagnosis of Familial Hypercholesterolemia in Serbia [J].
Lukac, Sandra Singh ;
Gasic, Vladimir ;
Komazec, Jovana ;
Grubisa, Ivana ;
Popovic, Ljiljana ;
Rasulic, Iva ;
Pavlovic, Sonja ;
Lalic, Katarina .
DIAGNOSTICS, 2025, 15 (10)
[33]   Oncogenic viruses: Lessons learned using next-generation sequencing technologies [J].
Flippot, Ronan ;
Malouf, Gabriel G. ;
Su, Xiaoping ;
Khayat, David ;
Spano, Jean-Philippe .
EUROPEAN JOURNAL OF CANCER, 2016, 61 :61-68
[34]   Harnessing virtual machines to simplify next-generation DNA sequencing analysis [J].
Nocq, Julie ;
Celton, Magalie ;
Gendron, Patrick ;
Lemieux, Sebastien ;
Wilhelm, Brian T. .
BIOINFORMATICS, 2013, 29 (17) :2075-2083
[35]   Genome-wide analysis of Chongqing native intersexual goats using next-generation sequencing [J].
E, Guang-xin ;
Jin, Mei-Lan ;
Zhao, Yong-Ju ;
Li, Xiang-Long ;
Li, Lan-Hui ;
Yang, Bai-Gao ;
Duan, Xing-Hai ;
Huang, Yong-Fu .
3 BIOTECH, 2019, 9 (03)
[36]   Noninvasive Prenatal Diagnosis Using Next-Generation Sequencing [J].
Xu, Liang ;
Shi, Rui .
GYNECOLOGIC AND OBSTETRIC INVESTIGATION, 2014, 77 (02) :73-77
[37]   Benchmarking accelerated next-generation sequencing analysis pipelines [J].
Samarakoon, Pubudu Saneth ;
Fournous, Ghislain ;
Hansen, Lars T. ;
Wijesiri, Ashen ;
Zhao, Sen ;
Alex, A. Rodriguez ;
Nandi, Tarak Nath ;
Madduri, Ravi ;
Rowe, Alexander D. ;
Thomassen, Gard ;
Hovig, Eivind ;
Razick, Sabry .
BIOINFORMATICS ADVANCES, 2025, 5 (01)
[38]   Next-generation sequencing data analysis on cloud computing [J].
Kwon, Taesoo ;
Yoo, Won Gi ;
Lee, Won-Ja ;
Kim, Won ;
Kim, Dae-Won .
GENES & GENOMICS, 2015, 37 (06) :489-501
[39]   Analysis of Human Triallelic SNPs by Next-Generation Sequencing [J].
Cao, Min ;
Shi, Juan ;
Wang, Jiqiu ;
Hong, Jie ;
Cui, Bin ;
Ning, Guang .
ANNALS OF HUMAN GENETICS, 2015, 79 (04) :275-281
[40]   Clinical analysis of genome next-generation sequencing data using the Omicia platform [J].
Coonrod, Emily M. ;
Margraf, Rebecca L. ;
Russell, Archie ;
Voelkerding, Karl V. ;
Reese, Martin G. .
EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2013, 13 (06) :529-540