Connected quandles and transitive groups

被引:37
作者
Hulpke, Alexander [1 ]
Stanovsky, David [2 ,3 ]
Vojtechovsksy, Petr [3 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague 18675 8, Czech Republic
[3] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
PERMUTATION-GROUPS; NUMBER;
D O I
10.1016/j.jpaa.2015.07.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a canonical correspondence between connected quandles and certain configurations in transitive groups, called quandle envelopes. This correspondence allows us to efficiently enumerate connected quandles of small orders, and present new proofs concerning connected quandles of order p and 2p. We also present a new characterization of connected quandles that are affine. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:735 / 758
页数:24
相关论文
共 41 条
  • [1] From racks to pointed Hopf algebras
    Andruskiewitsch, N
    Graña, M
    [J]. ADVANCES IN MATHEMATICS, 2003, 178 (02) : 177 - 243
  • [2] [Anonymous], 1979, MAT ISSLED
  • [3] Bruck R. H., 1958, ERGEB MATH IHRER GRE
  • [4] The Transitive Permutation Groups of Degree 32
    Cannon, John J.
    Holt, Derek F.
    [J]. EXPERIMENTAL MATHEMATICS, 2008, 17 (03) : 307 - 314
  • [5] Carter J. S., 2012, INTRO LECT KNOT THEO, V46, P22
  • [6] Quandle cohomology and state-sum invariants of knotted curves and surfaces
    Carter, JS
    Jelsovsky, D
    Kamada, S
    Langford, L
    Saito, M
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) : 3947 - 3989
  • [7] Quandle colorings of knots and applications
    Clark, W. Edwin
    Elhamdadi, Mohamed
    Saito, Masahico
    Yeatman, Timothy
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2014, 23 (06)
  • [8] CONNECTED QUANDLES ASSOCIATED WITH POINTED ABELIAN GROUPS
    Clark, W. Edwin
    Elhamdadi, Mohamed
    Hou, Xiang-Dong
    Saito, Masahico
    Yeatman, Timothy
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2013, 264 (01) : 31 - 60
  • [9] Conway J. H., 1998, LMS J COMPUT MATH, V1, P1
  • [10] Coxeter H. S. M., 1973, Regular polytopes, V3rd