Nonlinear systems describing phase transition models compatible with thermodynamics

被引:5
作者
Colli, P
Gentili, G
Giorgi, C
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Univ Bologna, Dipartmento Matemat, I-40126 Bologna, Italy
[3] Univ Brescia, Dipartimento Elettron & Automazione, Brescia, Italy
关键词
D O I
10.1142/S0218202599000464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to analyzing solutions of a nonlinear evolution system describing the phase transition in a rigid heat conductor in the presence of phase relaxation. First, in a general framework, a rate type constitutive law for the phase variable is considered and matched with the Helmholtz free energy involving the state of the material. Thermodynamic compatibility of the resulting models is scrutinized. Moreover, a comparison with a different phase change modelling is performed. Under proper assumptions, a nonlinear system in the (absolute) temperature and phase variable is achieved. For it, existence and uniqueness of the solution is proved and positivity of temperature is recovered.
引用
收藏
页码:1015 / 1037
页数:23
相关论文
共 24 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[3]  
Blanchard D., 1990, EUR J APPL MATH, V1, P91, DOI [10.1017/S0956792500000073, DOI 10.1017/S0956792500000073]
[4]  
Blanchard D., 1989, DIFFERENTIAL INTEGRA, V2, P344
[5]  
Brezis H., 1973, N HOLLAND MATH STUD, V5
[6]  
Brokate M., 1996, APPL MATH SCI, V121
[7]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205
[8]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[9]   On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type. [J].
Colli, P ;
Sprekels, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1995, 169 :269-289
[10]   A NONLINEAR EVOLUTION PROBLEM DESCRIBING MULTICOMPONENT PHASE-CHANGES WITH DISSIPATION [J].
COLLI, P ;
HOFFMANN, KH .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (3-4) :275-297