MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS

被引:0
作者
Cao, Li-Qun [1 ]
Zhang, Lei [2 ,3 ]
Allegretto, Walter [4 ]
Lin, Yanping [4 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Logist Acad, Dept Logist Management, Beijing 100858, Peoples R China
[3] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Steklov eigenvalue problem; multiscale method; superapproximation estimate; NUMERICAL BOUNDARY CORRECTOR; FINITE-ELEMENT-METHOD; ELLIPTIC-EQUATIONS; HOMOGENIZED EIGENVALUES; 1ST-ORDER CORRECTIONS; CONVERGENCE; APPROXIMATION; VIBRATIONS; BANDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.
引用
收藏
页码:42 / 73
页数:32
相关论文
共 43 条
[21]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[22]   Spectral stiff problems in domains surrounded by thin bands:: Asymptotic and uniform estimates for eigenvalues [J].
Gómez, D ;
Lobo, M ;
Nazarov, SA ;
Pérez, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (04) :598-632
[23]  
HAN H, 1994, NUMER METH PART D E, P35
[24]  
Henrot A, 2006, FRONT MATH, P1
[25]  
HINTON D., 1990, FUNKC EKVACIOJ-SER I, V33, P363
[26]   A multiscale finite element method for elliptic problems in composite materials and porous media [J].
Hou, TY ;
Wu, XH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (01) :169-189
[27]   Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].
Hou, TY ;
Wu, XH ;
Cai, ZQ .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :913-943
[28]  
Huang J, 2004, J COMPUT MATH, V22, P719
[29]   Γ-convergence for a fault model with slip-weakening friction and periodic barriers [J].
Ionescu, IR ;
Onofrei, D ;
Vernescu, B .
QUARTERLY OF APPLIED MATHEMATICS, 2005, 63 (04) :747-778
[30]  
Jikov V.V., 1994, Homogenization of Differential Operators and Integral Functionals, DOI 10.1007/978-3-642-84659-5