MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS

被引:0
作者
Cao, Li-Qun [1 ]
Zhang, Lei [2 ,3 ]
Allegretto, Walter [4 ]
Lin, Yanping [4 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Logist Acad, Dept Logist Management, Beijing 100858, Peoples R China
[3] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Steklov eigenvalue problem; multiscale method; superapproximation estimate; NUMERICAL BOUNDARY CORRECTOR; FINITE-ELEMENT-METHOD; ELLIPTIC-EQUATIONS; HOMOGENIZED EIGENVALUES; 1ST-ORDER CORRECTIONS; CONVERGENCE; APPROXIMATION; VIBRATIONS; BANDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.
引用
收藏
页码:42 / 73
页数:32
相关论文
共 43 条
[2]   Isoparametric finite-element approximation of a Steklov eigenvalue problem [J].
Andreev, AB ;
Todorov, TD .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (02) :309-322
[3]  
[Anonymous], 1974, Variational methods for eigenvalue approximation
[4]  
[Anonymous], 1953, Methods of mathematical physics
[5]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[6]   A posteriori error estimates for the Steklov eigenvalue problem [J].
Armentano, Maria G. ;
Padra, Claudio .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (05) :593-601
[7]   The effect of reduced integration in the Steklov eigenvalue problem [J].
Armentano, MG .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (01) :27-36
[8]  
BABUSKA I, 1991, HDB NUMERICAL ANAL, V2
[9]  
Bramble J.H., 1972, MATH FDN FINITE ELEM, P387
[10]  
Brenner S. C., 2007, MATH THEORY FINITE E