MULTISCALE COMPUTATION OF A STEKLOV EIGENVALUE PROBLEM WITH RAPIDLY OSCILLATING COEFFICIENTS

被引:0
作者
Cao, Li-Qun [1 ]
Zhang, Lei [2 ,3 ]
Allegretto, Walter [4 ]
Lin, Yanping [4 ,5 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Logist Acad, Dept Logist Management, Beijing 100858, Peoples R China
[3] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[4] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[5] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Steklov eigenvalue problem; multiscale method; superapproximation estimate; NUMERICAL BOUNDARY CORRECTOR; FINITE-ELEMENT-METHOD; ELLIPTIC-EQUATIONS; HOMOGENIZED EIGENVALUES; 1ST-ORDER CORRECTIONS; CONVERGENCE; APPROXIMATION; VIBRATIONS; BANDS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.
引用
收藏
页码:42 / 73
页数:32
相关论文
共 43 条