Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices

被引:45
作者
Fratzl, Mario [1 ,2 ]
Chang, Boyce S. [3 ]
Oyola-Reynoso, Stephanie [3 ]
Blaire, Guillaume [1 ]
Delshadi, Sarah [1 ,5 ,6 ]
Devillers, Thibaut [2 ]
Ward, Thomas, III [4 ]
Dempsey, Nora M. [2 ]
Bloch, Jean-Francis [7 ]
Thuo, Martin M. [3 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst Engn,G2Elab, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CNRS, Inst Engn, Grenoble INP,Inst Neel, F-38000 Grenoble, France
[3] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA
[4] Iowa State Univ, Dept Aerosp Engn, Ames, IA 50011 USA
[5] Univ Grenoble Alpes, CNRS, INSERM, IAB, F-38000 Grenoble, France
[6] Site Sante,Allee Alpes, F-38700 La Tronche, France
[7] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst Engn,3SR, F-38000 Grenoble, France
关键词
CARE DIAGNOSTIC DEVICES; NETWORK FORMAT; LAYERED PAPER; FLUID CONTROL; FABRICATION; FLOW; SENSORS; ASSAY;
D O I
10.1021/acsomega.7b01839
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This article presents a magnetically actuated two-way, three-position (+, 0, -), paper-based microfluidic valve that includes a neutral position (0). the first of its kind. The system is highly robust, customizable, and fully automated. The advent of a neutral position and the ability to precisely control switching frequencies establish a new platform for highly controlled fluid flows in paper-based wicking microfluidic devices. The potential utility of these valves is demonstrated in automated, programmed, patterning of dyed liquids in a wicking device akin to a colorimetric assay but with a programmed fluid/reagent delivery. These valves are fabricated using facile methods and thus remain cost-effective for adoption into affordable point-of-care/bioanalytical devices.
引用
收藏
页码:2049 / 2057
页数:9
相关论文
共 59 条
[51]   A versatile valving toolkit for automating fluidic operations in paper microfluidic devices [J].
Toley, Bhushan J. ;
Wang, Jessica A. ;
Gupta, Mayuri ;
Buser, Joshua R. ;
Lafleur, Lisa K. ;
Lutz, Barry R. ;
Fu, Elain ;
Yager, Paul .
LAB ON A CHIP, 2015, 15 (06) :1432-1444
[52]   Recent advances in low-cost microfluidic platforms for diagnostic applications [J].
Tomazelli Coltro, Wendell Karlos ;
Cheng, Chao-Min ;
Carrilho, Emanuel ;
de Jesus, Dosil Pereira .
ELECTROPHORESIS, 2014, 35 (16) :2309-2324
[53]   The dynamics of capillary flow. [J].
Washburn, EW .
PHYSICAL REVIEW, 1921, 17 (03) :273-283
[54]  
Whitesides G.M., 2010, Towards a Science of Simplicity
[55]   Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review [J].
Xia, Yanyan ;
Si, Jin ;
Li, Zhiyang .
BIOSENSORS & BIOELECTRONICS, 2016, 77 :774-789
[56]   Paper-based microfluidic point-of-care diagnostic devices [J].
Yetisen, Ali Kemal ;
Akram, Muhammad Safwan ;
Lowe, Christopher R. .
LAB ON A CHIP, 2013, 13 (12) :2210-2251
[57]   Logic digital fluidic in miniaturized functional devices: Perspective to the next generation of microfluidic lab-on-chips [J].
Zhang, Qiongdi ;
Zhang, Ming ;
Djeghlaf, Lyas ;
Bataille, Jeanne ;
Gamby, Jean ;
Haghiri-Gosnet, Anne-Marie ;
Pallandre, Antoine .
ELECTROPHORESIS, 2017, 38 (07) :953-976
[58]  
Zhao C., 2016, Microfluidic Methods for Molecular Biology, P205
[59]   A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers [J].
Zhao, Chen ;
Thuo, Martin M. ;
Liu, Xinyu .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2013, 14 (05)