Oscillation of Two-Dimensional Neutral Delay Dynamic Systems

被引:1
作者
Zhang, Xinli [1 ]
Zhu, Shanliang [1 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
关键词
ASYMPTOTIC-BEHAVIOR; EQUATIONS; CRITERIA;
D O I
10.1155/2013/871961
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a class of nonlinear two-dimensional dynamic systems of the neutral type (x(t) - a(t)x(tau(1)(t)))(Delta) = p(t)f(1)(y(t)), y(Delta)(t) = -q(t)f(2)(x(tau(2)(t))). We obtain sufficient conditions for all solutions of the system to be oscillatory. Our oscillation results when a(t) = 0 improve the oscillation results for dynamic systems on time scales that have been established by Fu and Lin (2010), since our results do not restrict to the case where f(u) = u. Also, as a special case when T = R, our results do not require a(n) to be a positive real sequence. Some examples are given to illustrate the main results.
引用
收藏
页数:7
相关论文
共 13 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
Agarwal R. P., 1999, Results Math, V35, P3, DOI DOI 10.1007/BF03322019
[3]  
Bohner M., 2001, Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-1-4612-0201-1
[4]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[5]   Oscillation and Asymptotic Behavior for nth-order Nonlinear Neutral Delay Dynamic Equations on Time Scales [J].
Chen, Da-Xue .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :703-719
[6]   Oscillation criteria for second-order nonlinear delay dynamic equations [J].
Erbe, L. ;
Peterson, A. ;
Saker, S. H. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (01) :505-522
[7]   Oscillation and nonoscillation criteria for linear dynamic systems on time scales [J].
Fu, Sheng-Chen ;
Lin, Ming-Li .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (08) :2552-2565
[8]   Nonoscillatory bounded solutions of neutral differential systems [J].
Hanustiakova, L'ubica ;
Olach, Rudolf .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) :1816-1824
[9]  
Hilger S., 1990, Result math, V18, P18, DOI [DOI 10.1007/BF03323153, 10.1007/BF03323153]
[10]  
Rath RN, 2007, MATH SLOVACA, V57, P157, DOI 10.2478/sl2175-007-0006-7