Probability fold change: A robust computational approach for identifying differentially expressed gene lists

被引:5
作者
Deng, Xutao [1 ,2 ]
Xu, Jun [2 ]
Hui, James [1 ]
Wang, Charles [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Cedars Sinai Med Ctr, David Geffen Sch Med, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Burns Allen Res Inst, Los Angeles, CA 90048 USA
关键词
DNA microarray; Differentially expressed gene; Gene expression; Gene-ranking algorithm; FALSE DISCOVERY RATE; MICROARRAY EXPERIMENTS; CANCER CLASSIFICATION; NONPARAMETRIC METHODS; DNA MICROARRAYS; REPRODUCIBILITY; PERMUTATION; CONSISTENCY; PERFORMANCE; STATISTICS;
D O I
10.1016/j.cmpb.2008.07.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Identifying genes that are differentially expressed under different experimental conditions is a fundamental task in microarray studies. However, different ranking methods generate very different gene lists, and this could profoundly impact follow-up analyses and biological interpretation. Therefore, developing improved ranking methods are critical in microarray data analysis. We developed a new algorithm, the probabilistic fold change (PFC), which ranks genes based on a confidence interval estimate of fold change. We performed extensive testing using multiple:benchmark data sources including the MicroArray Quality Control (MAQC) data sets. We corroborated our observations with MAQC data sets using qRT-PCR data sets and Latin square spike-in data sets. Along with PFC, we tested six other popular ranking algorithms including Mean Fold Change (FC), SAM, t-statistic (T), Bayesian-t (BAYT), Intensity-Conditional Fold Change (CFC), and Rank Product (RP). PFC achieved reproducibility and accuracy that are consistently among the best of the seven ranking algorithms while other ranking algorithms would show weakness in some cases. Contrary to common belief, our results demonstrated that statistical accuracy will not translate to biological reproducibility and therefore both quality aspects need to be evaluated. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:124 / 139
页数:16
相关论文
共 57 条
[1]  
Affymetrix, 2005, GUID PROB LOG INT ER
[2]   A mixture model approach for the analysis of microarray gene expression data [J].
Allison, DB ;
Gadbury, GL ;
Heo, MS ;
Fernández, JR ;
Lee, CK ;
Prolla, TA ;
Weindruch, R .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) :1-20
[3]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[4]   Standardizing global gene expression analysis between laboratories and across platforms [J].
Bammler, T ;
Beyer, RP ;
Bhattacharya, S ;
Boorman, GA ;
Boyles, A ;
Bradford, BU ;
Bumgarner, RE ;
Bushel, PR ;
Chaturvedi, K ;
Choi, D ;
Cunningham, ML ;
Dengs, S ;
Dressman, HK ;
Fannin, RD ;
Farun, FM ;
Freedman, JH ;
Fry, RC ;
Harper, A ;
Humble, MC ;
Hurban, P ;
Kavanagh, TJ ;
Kaufmann, WK ;
Kerr, KF ;
Jing, L ;
Lapidus, JA ;
Lasarev, MR ;
Li, J ;
Li, YJ ;
Lobenhofer, EK ;
Lu, X ;
Malek, RL ;
Milton, S ;
Nagalla, SR ;
O'Malley, JP ;
Palmer, VS ;
Pattee, P ;
Paules, RS ;
Perou, CM ;
Phillips, K ;
Qin, LX ;
Qiu, Y ;
Quigley, SD ;
Rodland, M ;
Rusyn, I ;
Samson, LD ;
Schwartz, DA ;
Shi, Y ;
Shin, JL ;
Sieber, SO ;
Slifer, S .
NATURE METHODS, 2005, 2 (05) :351-356
[5]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[6]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[7]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[8]   Significance and statistical errors in the analysis of DNA microarray data [J].
Brody, JP ;
Williams, BA ;
Wold, BJ ;
Quake, SR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12975-12978
[9]   Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays [J].
Clark, TA ;
Sugnet, CW ;
Ares, M .
SCIENCE, 2002, 296 (5569) :907-910
[10]  
CUI X, 2003, STAT APPL GENET MOL, V2