A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES

被引:0
作者
Carriao, Paulo Cesar [1 ]
Lehrer, Raquel [2 ]
Miyagaki, Olimpio Hiroshi [3 ]
Vicente, Andre [2 ]
机构
[1] Univ Fed Minas Gerais, ICEX, DM, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Estadual Oeste Parana, CCET, Rua Univ,2069,Jd Univ, BR-85819110 Cascavel, PR, Brazil
[3] Univ Fed Juiz de Fora, DM, BR-36036330 Juiz De Fora, MG, Brazil
关键词
Variational method; critical point; critical exponent; hyperbolic manifold; SEMILINEAR ELLIPTIC EQUATION; R-N;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Brezis-Nirenberg problem on the hyperbolic space H-n. By using the stereographic projection, the problem becomes a singular problem on the boundary of the open ball B-1 (0) subset of R-n. Thanks to the Hardy inequality, in a version due to Brezis-Marcus, the difficulty involving singularities can be overcame. We use the mountain pass theorem due to Ambrosetti-Rabinowitz and Brezis-Nirenberg arguments to obtain a nontrivial solution.
引用
收藏
页数:15
相关论文
共 29 条
[1]  
Aubin T., 1984, APPL NONLINEAR ANAL
[2]   On the positive, "radial" solutions of a semilinear elliptic equation in HN [J].
Bandle, Catherine ;
Kabeya, Yoshitsugu .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (01) :1-25
[3]   The Brezis-Nirenberg problem for the Laplacian with a singular drift in Rn and Sn [J].
Benguria, Rafael D. ;
Benguria, Soledad .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 157 :189-211
[4]   The solution gap of the Brezis-Nirenberg problem on the hyperbolic space [J].
Benguria, Soledad .
MONATSHEFTE FUR MATHEMATIK, 2016, 181 (03) :537-559
[5]   Poincar,-Sobolev equations in the hyperbolic space [J].
Bhakta, Mousomi ;
Sandeep, K. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2012, 44 (1-2) :247-269
[6]   ON SYMMETRICAL SOLUTIONS OF AN ELLIPTIC EQUATION WITH A NONLINEARITY INVOLVING CRITICAL SOBOLEV EXPONENT [J].
BIANCHI, G ;
CHABROWSKI, J ;
SZULKIN, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (01) :41-59
[7]  
Bonorino LP, 2018, J GEOM ANAL, V28, P2503, DOI 10.1007/s12220-017-9915-z
[8]  
Brezies H., 2011, Functional Analysis. Sobolev Spaces and Partial Differential Equations, DOI [10.1007/978-0-387-70914-7, DOI 10.1007/978-0-387-70914-7]
[9]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[10]  
Brezis H., 1987, DIRECTIONS PARTIAL D, P17