Observations and modelling of the processing of aerosol by a hill cap cloud

被引:47
作者
Bower, KN
Choularton, TW
Gallagher, MW
Colvile, RN
Wells, M
Beswick, KM
Wiedensohler, A
Hansson, HC
Svenningsson, B
Swietlicki, E
Wendisch, M
Berner, A
Kruisz, C
Laj, P
Facchini, MC
Fuzzi, S
Bizjak, M
Dollard, G
Jones, B
Acker, K
Wieprecht, W
Preiss, M
Sutton, MA
Hargreaves, KJ
StoretonWest, RL
Cape, JN
Arends, BG
机构
[1] LUND UNIV, DIV NUCL PHYS, S-22362 LUND, SWEDEN
[2] INST TROPOSPHER RES, D-04303 LEIPZIG, GERMANY
[3] UNIV VIENNA, INST EXPT PHYS, A-1090 VIENNA, AUSTRIA
[4] CNR, IST FISBAT, I-40129 BOLOGNA, ITALY
[5] NATL INST CHEM, LJUBLJANA 61115, SLOVENIA
[6] AEA TECHNOL, NATL ENVIRONM TECHNOL CTR, ABINGDON OX14 3DB, OXON, ENGLAND
[7] FRAUNHOFER INST ATMOSPHAR UMWELTFORSCH, AUSSENSTELLE LUFTCHEM, D-12484 BERLIN, GERMANY
[8] UNIV FRANKFURT, ZENTRUM UMWELTFORSCH, D-60325 FRANKFURT, GERMANY
[9] INST TERR ECOL, EDINBURGH RES STN, PENICUIK EH26 0QB, MIDLOTHIAN, SCOTLAND
[10] NETHERLANDS ENERGY RES FDN, NL-1755 ZG PETTEN, NETHERLANDS
关键词
aerosol modification; accumulation mode; CCN; nucleation scavenging cloud microphysics; cloud chemistry; S(IV) oxidation; cap cloud model;
D O I
10.1016/S1352-2310(96)00317-2
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Observations are presented of the aerosol size distribution both upwind and downwind of the Great Dun Fell cap cloud. Simultaneous measurements of the cloud microphysics and cloud chemistry, and of the chemical composition of the aerosol both upwind and downwind of the hill were made along with measurements of sulphur dioxide, hydrogen peroxide and ozone. These observations are used for initialisation of, and for comparison with the predictions of a model of the air flow, cloud microphysics and cloud chemistry of the system. A broad droplet size distribution is often observed near to the hill summit, seemingly produced as a result of a complex supersaturation profile and by mixing between parcels with different ascent trajectories. The model generates several supersaturation peaks as the airstream ascends over the complex terrain, activating increasing numbers of droplets. In conditions where sulphate production in-cloud (due to the oxidation of S(IV) by hydrogen peroxide and ozone) is observed, there is a marked effect on the chemical evolution of the aerosol particles on which the droplets form. When sulphate production occurs, a significant modification of the aerosol size distribution and hygroscopic properties is both predicted and observed. The addition of sulphate mass to those aerosol particles nucleation scavenged by the cloud generally increases the ease with which they are subsequently able to act as cloud condensation nuclei (CCN). Often, this will lead to an increase in the number of CCN available for subsequent cloud formation, although this latter effect is shown to be strongly dependent upon the activation history of the droplets and the concentration of pollutant gases present in the interstitial air. Situations are also identified where cloud processing could lead to a reduction in the capacity of smaller aerosol to act as CCN. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:2527 / 2543
页数:17
相关论文
共 22 条
[1]  
[Anonymous], 1978, Microphysics of Clouds and Precipitation, DOI 10.1007/978-94-009-9905-3
[2]   SO2 OXIDATION IN AN ENTRAINING CLOUD MODEL WITH EXPLICIT MICROPHYSICS [J].
BOWER, KN ;
HILL, TA ;
COE, H ;
CHOULARTON, TW .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1991, 25 (10) :2401-2418
[3]  
BOWER KN, 1993, Q J ROY METEOR SOC, V119, P655, DOI 10.1002/qj.49711951204
[4]  
BOWER KN, 1988, Q J ROY METEOR SOC, V114, P1411, DOI 10.1002/qj.49711448404
[5]   CLIMATE FORCING BY ANTHROPOGENIC AEROSOLS [J].
CHARLSON, RJ ;
SCHWARTZ, SE ;
HALES, JM ;
CESS, RD ;
COAKLEY, JA ;
HANSEN, JE ;
HOFMANN, DJ .
SCIENCE, 1992, 255 (5043) :423-430
[6]   The Great Dun Fell Cloud Experiment 1993: An overview [J].
Choularton, TW ;
Colvile, RN ;
Bower, KN ;
Gallagher, MW ;
Wells, M ;
Beswick, KM ;
Arends, BG ;
Mols, JJ ;
Kos, GPA ;
Fuzzi, S ;
Lind, JA ;
Orsi, G ;
Facchini, MC ;
Laj, P ;
Gieray, R ;
Wieser, P ;
Engelhardt, T ;
Berner, A ;
Kruisz, C ;
Moller, D ;
Acker, K ;
Wieprecht, W ;
Luttke, J ;
Levsen, K ;
Bizjak, M ;
Hansson, HC ;
Cederfelt, SI ;
Frank, G ;
Mentes, B ;
Martinsson, B ;
Orsini, D ;
Svenningsson, B ;
Swietlicki, E ;
Wiedensohler, A ;
Noone, KJ ;
Pahl, S ;
Winkler, P ;
Seyffer, E ;
Helas, G ;
Jaeschke, W ;
Georgii, HW ;
Wobrock, W ;
Preiss, M ;
Maser, R ;
Schell, D ;
Dollard, G ;
Jones, B ;
Davies, T ;
Sedlak, DL ;
David, MM .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (16) :2393-2405
[7]   Meteorology of the Great Dun Fell Cloud Experiment 1993 [J].
Colvile, RN ;
Bower, KN ;
Choularton, TW ;
Gallagher, MW ;
Beswick, KM ;
Arends, BG ;
Kos, GPA ;
Wobrock, W ;
Schell, D ;
Hargreaves, KJ ;
StoretonWest, RL ;
Cape, JN ;
Jones, BMR ;
Wiedensohler, A ;
Hansson, HC ;
Wendisch, M ;
Acker, K ;
Wieprecht, W ;
Pahl, S ;
Winkler, P ;
Berner, A ;
Kruisz, C ;
Gieray, R .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (16) :2407-2420
[8]   COMPUTER MODELING OF CLOUDS AT KLEINER-FELDBERG [J].
COLVILE, RN ;
SANDER, R ;
CHOULARTON, TW ;
BOWER, KN ;
INGLIS, DWF ;
WOBROCK, W ;
SCHELL, D ;
SVENNINGSSON, IB ;
WIEDENSOHLER, A ;
HANSSON, HC ;
HALLBERG, A ;
OGREN, JA ;
NOONE, KJ ;
FACCHINI, MC ;
FUZZI, S ;
ORSI, G ;
ARENDS, BG ;
WINIWARTER, W ;
SCHNEIDER, T ;
BERNER, A .
JOURNAL OF ATMOSPHERIC CHEMISTRY, 1994, 19 (1-2) :189-229
[9]   MEASUREMENT OF THE ENTRAINMENT OF HYDROGEN-PEROXIDE INTO CLOUD SYSTEMS [J].
GALLAGHER, MW ;
CHOULARTON, TW ;
DOWNER, R ;
TYLER, BJ ;
STROMBERG, IM ;
MILL, CS ;
PENKETT, SA ;
BANDY, B ;
DOLLARD, GJ ;
DAVIES, TJ ;
JONES, BMR .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1991, 25 (09) :2029-2038
[10]   Microphysics of clouds: Model vs measurements [J].
Hallberg, A ;
Wobrock, W ;
Flossmann, AI ;
Bower, KN ;
Noone, KJ ;
Wiedensohler, A ;
Hansson, HC ;
Wendisch, M ;
Berner, A ;
Kruisz, C ;
Laj, P ;
Facchini, MC ;
Fuzzi, S ;
Arends, BG .
ATMOSPHERIC ENVIRONMENT, 1997, 31 (16) :2453-2462