Focused electron beam induced processing and the effect of substrate thickness revisited

被引:19
作者
van Dorp, W. F. [1 ]
Beyer, A. [2 ]
Mainka, M. [2 ]
Goelzhaeuser, A. [2 ]
Hansen, T. W. [3 ]
Wagner, J. B. [3 ]
Hagen, C. W. [4 ]
De Hosson, J. Th M. [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, NL-9747 AG Groningen, Netherlands
[2] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
[3] Tech Univ Denmark, Ctr Electron Nanoscopy, DK-2800 Lyngby, Denmark
[4] Delft Univ Technol, Fac Sci Appl, NL-2628 CJ Delft, Netherlands
关键词
INDUCED DEPOSITION;
D O I
10.1088/0957-4484/24/34/345301
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The current understanding in the study of focused electron beam induced processing (FEBIP) is that the growth of a deposit is mainly the result of secondary electrons (SEs). This suggests that the growth rate for FEBIP is affected by the SE emission from the support. Our experiments, with membranes thinner than the SE escape depth, confirm this hypothesis. We used membranes of 1.4 and 4.3 nm amorphous carbon as supports. At the very early stage, the growth is support-dominated and the growth rate on a 4.3 nm thick membrane is three times higher than on a 1.4 nm thick membrane. This is consistent with Monte Carlo simulations for SE emission. The results suggest that SEs are dominant in the dissociation of W(CO)(6) on thin membranes. The best agreement between simulations and experiment is obtained for SEs with energies between 3 and 6 eV. With this work we revisit earlier experiments, working at a precursor pressure 20 times lower than previously. Then, despite using membranes thinner than the SE escape depth, we did not see an effect on the experimental growth rate. We explain our current results by the fact that very early in the process, the growth becomes dominated by the growing deposit itself.
引用
收藏
页数:6
相关论文
共 24 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Low-energy electron-induced reactions in condensed matter [J].
Arumainayagam, Christopher R. ;
Lee, Hsiao-Lu ;
Nelson, Rachel B. ;
Haines, David R. ;
Gunawardane, Richard P. .
SURFACE SCIENCE REPORTS, 2010, 65 (01) :1-44
[3]   Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective [J].
Botman, A. ;
Mulders, J. J. L. ;
Hagen, C. W. .
NANOTECHNOLOGY, 2009, 20 (37)
[4]   Influence of the beam scan direction during focused electron beam induced deposition of 3D nanostructures [J].
Bret, T ;
Utke, I ;
Hoffmann, P .
MICROELECTRONIC ENGINEERING, 2005, 78-79 :307-313
[5]   Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3 [J].
Crozier, PA ;
Tolle, J ;
Kouvetakis, J ;
Ritter, C .
APPLIED PHYSICS LETTERS, 2004, 84 (18) :3441-3443
[6]   Carbon nanopillar laterally grown with electron beam-induced chemical vapor deposition [J].
Fujita, J ;
Ishida, M ;
Ichihashi, T ;
Ochiai, Y ;
Kaito, T ;
Matsui, S .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06) :2990-2993
[7]   Aberration corrected and monochromated environmental transmission electron microscopy: challenges and prospects for materials science [J].
Hansen, T. W. ;
Wagner, J. B. ;
Dunin-Borkowski, R. E. .
MATERIALS SCIENCE AND TECHNOLOGY, 2010, 26 (11) :1338-1344
[8]   ULTRALOW-ENERGY FOCUSED ELECTRON-BEAM-INDUCED DEPOSITION [J].
HOYLE, PC ;
CLEAVER, JRA ;
AHMED, H .
APPLIED PHYSICS LETTERS, 1994, 64 (11) :1448-1450
[9]   Refinement of Monte Carlo simulations of electron-specimen interaction in low-voltage SEM [J].
Kieft, Erik ;
Bosch, Eric .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (21)
[10]   Tungsten chemical vapor deposition using tungsten hexacarbonyl: microstructure of as-deposited and annealed films [J].
Lai, KK ;
Lamb, HH .
THIN SOLID FILMS, 2000, 370 (1-2) :114-121